一 , 概述
在现代密码学诞生以前,就已经有很多的加密方法了。例如,最古老的斯巴达加密棒,广泛应用于公元前7世纪的古希腊。16世纪意大利数学家卡尔达诺发明的栅格密码,基于单表代换的凯撒密码、猪圈密码,基于多表代换的维吉尼亚密码,二战中德军广泛使用的恩格玛加密机…但最终都找到了有效的破解算法。
现代密码学的诞生标志是1977年1月由美国国家标准局公布的数据加密标准(Data Encryption Standard,DES)。
在经过20多年之后,为适应现代的安全要求,2000年美国国家和标准技术协会筛选和评测出了被称为AES(Advanced Encryption Standard)的加密算法作为新的加密标准。目前,AES已被广泛使用,且未发现致命缺陷。到目前为止,AES是一个安全的加密算法。
然而,在加密算法之外,面临一个问题,那就是:秘钥的分发。就是说,解密方如何获得加密方的秘钥呢? 从而出现了:对称加密和非对称加密。
二,对称加密和非对称加密
1. 对称加密
对称加密指的就是加密和解密使用同一个秘钥,所以叫做对称加密。对称加密只有一个秘钥,作为私钥。
常见的对称加密算法:DES,AES,3DES等等。
2. 非对称加密
非对称加密指的是:加密和解密使用不同的秘钥,一把作为公开的公钥,另一把作为私钥。公钥加密的信息,只有私钥才能解密。私钥加密的信息,只有公钥才能解密。
常见的非对称加密算法:RSA,ECC
3. 区别
对称加密算法相比非对称加密算法来说,加解密的效率要高得多。但是缺陷在于对于秘钥的管理上,以及在非安全信道中通讯时,密钥交换的安全性不能保障。所以在实际的网络环境中,会将两者混合使用.
例如针对C/S模型,
- 服务端计算出一对秘钥pub/pri。将私钥保密,将公钥公开。
- 客户端请求服务端时,拿到服务端的公钥pub。
- 客户端通过AES计算出一个对称加密的秘钥X。 然后使用pub将X进行加密。
- 客户端将加密后的密文发送给服务端。服务端通过pri解密获得X。
- 然后两边的通讯内容就通过对称密钥X以对称加密算法来加解密。
三,RSA原理
我们先来看这样一些基础知识,并且以下我们讨论全都是整数:
整数运算
在整数运算中 我们定义一个整数 x x x,那么他的负数为- x x x,并且有 x x x+(- x x x)=0;
他的倒数为 x − 1 x^{-1} x−1 , 并且有 x × x − 1 x\times x^{-1} x×x−1 =1;
同余运算
有整数a,b,正整数m。 假如a除以m余b。我们称为a模m同余b,模数为m。并且记为 a ≡ b ( m o d m ) a\equiv b\pmod{m} a≡b(modm) ,例如10除以3余1
我们称10模3同余1,记为 10 ≡ 1 ( m o d 3 ) 10\equiv 1\pmod{3} 10≡1(mod3) 。
我们分别讨论模数为合数和质数情况下,基于同余运算的负数和倒数。
1. 当模数为合数 n n n时
简单起见,我们讨论当 n n n为10的情况,10是两个质数乘积
当模数为10的时候,参与运算的都是小于10的数。因为大于10的数除模取余之后都会小于10,所以只需要考虑小于模的数。
那么在同余运算中
一个小于10的数a,他的负数 x x x是什么? 也就是说使得 ( a + x ) ≡ 0 ( m o d 10 ) (a+x)\equiv 0\pmod{10} (a+x)≡0(mod10) ; 那就是 n − a n-a n−a,即 x = n − a x=n-a x=n−a。这里的 x x x就像是常规运算下的-a。常规运算下 a + ( − a ) = 0 a+(-a)=0 a+(−a)=0,我们说 − a -a −a是 a a a的负数,这里 ( a + x ) ≡ 0 ( m o d 10 ) (a+x)\equiv 0\pmod{10} (a+x)≡0(mod10),我们说 x x x是 a a a的负数。;
有 a + ( n − a ) = a + ( − a ) + n = n ≡ 0 ( m o d n ) a+(n-a)=a+(-a)+n= n\equiv 0\pmod{n} a+(n−a)=a+(−a)+n=n≡0(modn) 。 当 n = 10 n=10 n=10的时候 ,有如下表
a a a | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
x x x | 0 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
那么, a a a的倒数 a − 1 a^{-1} a−1是什么呢? 它要使得 a × a − 1 a\times a^{-1} a×a−1在模数为n的情况下等于1,即 a × a − 1 ≡ 1 ( m o d n ) a\times a^{-1}\equiv 1\pmod{n} a×a−1≡1(modn)
当 n = 10 n=10 n=10的时候我们会发现,对于有的数我们可以找到它的倒数,有的数却找不到
例如当 a = 3 a=3 a=3,我们可以找到7,使得$3\times7= 21 \equiv 1\pmod {10} $ ;
而当a=4的时候,我们有 4 × 0 = 0 4\times0 = 0 4×0=0, 4 × 1 = 4 4\times 1= 4 4×1=4, 4 × 2 = 8 4\times2 = 8 4×2=8, 4 × 3 = 12 4\times3= 12 4×3=12, 4 × 4 = 16 4\times4 = 16 4×4=16, 4 × 5 = 20 4\times5 = 20 4×5=20, 4 × 6 = 24 4\times6 = 24 4×6=24, 4 × 7 = 28 4\times7 = 28 4×7=28, 4 × 8 = 32 4\times8 = 32 4×8=32, 4 × 9 = 36 4\times9 = 36 4×9=36,在模10的情况下,都不会等于1。
我们对于所有小于10的 a a a都找他的倒数 a − 1 a^{-1} a−1,有下表
a a a | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|