已知三个升序整数数组a[l], b[m]和c[n]。请在三个数组中各找一个元素,是的组成的三元组距离最小。三元组的距离定义是:假设a[i]、b[j]和c[k]是一个三元组,那么距离为:
Distance = max(|a[ I ] – b[ j ]|, |a[ I ] – c[ k ]|, |b[ j ] – c[ k ]|)
请设计一个求最小三元组距离的最优算法,并分析时间复杂度。
#include<iostream>
using namespace std;
int Max(int a,int b,int c )
{
return (a>b&&a>c)?a:b>c?b:c ;//&&优先级大于? :
/*
if(a>=b&&a>=c)
return a;
else
if(b>=a&&b>=c)
return b;
else
return c;
*/
}
int Min(int a,int b,int c )
{
if(a<=b&&a<=c)
return a;
else
if(b<=a&&b<=c)
return b;
else
return c;
}
int Min_distance(int *a,int alen,int*b,int blen,int*c,int clen)
{
int i=0;
int j=0;
int k=0;
int max,min;
int dis;
int min_dis;
max=Max(a[0],b[0],c[0]);
min=Min(a[0],b[0],c[0]);
min_dis=max-min;
while((i < alen)&&(j < blen)&&(k < clen))
{
max=Max(a[i],b[j],c[k]);
min=Min(a[i],b[j],c[k]);
dis=max-min;
if(dis<min_dis)
min_dis=dis;
if(a[i]<=b[j]&&a[i]<=c[k])
i++;
else
if(b[j]<=a[i]&&b[j]<=c[k])
j++;
else
k++;
}
return min_dis;
}
int main()
{
int a[3]={5,6,7};
int b[4]={13,14,15,17};
int c[6]={19, 22, 24, 29, 32, 42};
int n=Min_distance(a,3,b,4,c,6);
cout<<"mindistance="<<n<<endl;
return 0;
}