Model Thinkinng之Markov Process

当有限的状态之间可以随意迁移并有固定的概率,且其中没有环(即A->B->A->B的循环)这种状态的话,则可以无视系统一开始的状态,到达一个稳定的动态平衡状态。

比如说,系统有A,B两种状态,则有4种迁移的可能,A->A,A->B,B->A,B->B。则最后的稳定公式为

(PAAPABPBAPBB)(p1p)=(p1p)

注意, PAA PBB 不能是0,否则就是环了。

Markov Process模型下的世界

它是对历史,突发事件,起始条件都不care的宿命论,只要条件依然满足是markov process。
但当状态之间的固定迁移概率发生了变化,那么有意思的东西就会出现,往往引爆点(tipping point)就此出现。

应用
  • 由于一个人的文风变化不大,可以通过文字和短语的使用,来区分作者。
  • 医疗治疗的效果评估,有效的医疗方式下,用户感觉(状态)迁移。
  • 两国交战可能性的判断,两个国家交恶情况下的外交关系(措辞)的变化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值