机器学习方案落地8步曲

本文介绍了将机器学习模型应用于实际场景的8个步骤,包括数据准备、特征工程、特征选择、降低维度、模型选择、参数调整、全量训练及模型部署与监控。强调了数据清洗、特征选择对模型性能的影响,并提及mRMR等特征选择算法。
摘要由CSDN通过智能技术生成

本文参考在线文章整理而成。

对于机器学习的模型如何使用到实际场景,有8个步骤。一般而言,你需要定义需要解决的商业问题,确定哪些数据需要收集,判断最后输出结果如何衡量有效。然后你就可以执行这8步了。

  1. 准备数据,创建对应的特征值
    大量的原始数据,在分析前需要收集并转换成便于分析的格式,这个工作称之为 feature engineering ,对于一个复杂的项目,耗时可能需要数月。
  2. 挑选特征值
    当有成百上千特征值后,有些特征值是无关的或者重复的,它们只会给模型带来干扰,严重影响训练效率。这里需要做数据清洗。数据清洗的需要结合对于业务的理解以及一些数学技巧,如最小冗余最大相关1(mRMR,特征值与输出结果关联度最大,而特征值间关联度最小 代码参见此处 )
  3. ==降低维度==
    很多特征值彼此相关,可以采用PCA和deep autoencoder的方式将数据变为更为互相独立的集合。
    ==这个与挑选特征值的关联是什么?递进?比较提到特征值有重复,莫非只是指业务上重复?而这里指数学上?==
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值