动态规划之最大子数组和

题目描述

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

提示:

1 <= nums.length <= 105
-104 <= nums[i] <= 104

进阶:如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的 分治法 求解。

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/maximum-subarray
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

题解

转移方程

f(i)=max{f(i−1)+nums[i],nums[i]}

C 实现方法

int maxSubArray(int* nums, int numsSize){
    int preNum = nums[0], maxNum = nums[0];

    for (int i = 1; i < numsSize; i++) {
        preNum = fmax(nums[i], preNum + nums[i]);
        maxNum = fmax(maxNum, preNum);
    }

    return maxNum;
}

C++ 实现方法

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int len = nums.size();
        int pre = 0, maxRes = nums[0];

        pre = nums[0];
        for (int i = 1; i < len; i++) {
            pre = fmax(pre + nums[i], nums[i]);
            if (pre > maxRes) {
                maxRes = pre;
            }
        }

        return maxRes;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值