数论题目——华华给月月出题、B. 数因式分解、来点gcd

华华给月月出题

题目描述

B-华华给月月出题_牛客竞赛数学专题班积性函数(积性函数概念、欧拉筛求积性函数、莫比乌斯反演) (nowcoder.com)

运行代码

#include<iostream>
using namespace std;
typedef long long ll;
const int N=1.3e7+7;
const int mod=1e9+7;
int prime[N],cnt,vis[N];
int FM(int m,int k,int p){
    int res=1,a=m%p;
    while(k){
        if(k&1)res=(ll)res*a%p;
        a=(ll)a*a%p;
        k>>=1;
    }
    return res;
}
void init(int n){
vis[1]=1;
for(int i=2;i<=n;i++){
    if(!vis[i]){
        prime[cnt++]=i;
        vis[i]=FM(i,n,mod);
    }
    for(int j=0;prime[j]<=n/i;j++){
        vis[i*prime[j]]=(ll)vis[i]*vis[prime[j]]%mod;
        if(i%prime[j]==0)break;
    }
}
}
int main(){
    int n;
    cin>>n;
    init(n);
    ll ans=0;
    for(int i=1;i<=n;i++){
        ans^=vis[i];
    }
    cout<<ans<<endl;
    return 0;
}

代码思路

  1. 定义了一些常量和数组:

    • N 表示一个较大的上限。
    • mod 用于取模运算。
    • prime 数组用于存储质数,cnt 用于记录质数的个数,vis 数组用于存储一些计算结果。
  2. 定义了一个函数 FM 用于快速幂运算,计算 m 的 k 次幂对 p 取模的结果。

  3. init 函数用于初始化 vis 数组:

    • 从 2 到 n 遍历,如果一个数 i 未被标记(即不是之前找到的质数的倍数),则将其标记为质数,并计算 i 的 n 次幂对 mod 取模的结果存储在 vis[i] 中。
    • 对于每个数 i ,再遍历之前找到的质数,如果 i 是某个质数的倍数,则计算并更新 vis[i * prime[j]] ,如果 i 恰好是某个质数的倍数,就提前退出内层循环。
  4. 在 main 函数中:

    • 读取输入的整数 n 。
    • 调用 init 函数进行初始化。
    • 计算 vis 数组中从 1 到 n 的元素的异或和,存储在 ans 中。
    • 输出 ans 的值。

B. 数因式分解

题目描述

问题 - B - Codeforces

运行代码

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

vector<pair<int, int>> a;
int x = 1;

void cal(int n) {
    for (int i = 2; i * i <= n; i++) {
        bool flag = false;
        int cnt = 0;
        while (n % i == 0) {
            cnt++;
            n /= i;
            flag = true;
        }
        if (flag) {
            x *= i;
            a.emplace_back(cnt, i);
        }
        if (n == 1) {
            return;
        }
    }
    if (n > 1) {
        a.emplace_back(1, n);
        x *= n;
    }
}

int main() {
    cin.tie(0);
    cout.tie(0);
    ios::sync_with_stdio(false);

    int t;
    cin >> t;

    while (t--) {
        x = 1;
        a.clear();
        int n;
        cin >> n;

        cal(n);

        sort(a.begin(), a.end());

        int ans = 0;
        int mi = 0;

        for (const auto& p : a) {
            ans += x * (p.first - mi);
            mi = p.first;
            x /= p.second;
            if (x == 1) {
                break;
            }
        }

        cout << ans << endl;
    }

    return 0;
}

代码思路

  1. cal 函数:

    • 这个函数用于对给定的整数 n 进行质因数分解。
    • 从 2 开始到 sqrt(n) 遍历,检查每个数是否能整除 n 。
    • 如果能整除,就记录该数的出现次数 cnt ,并标记为一个质因数(flag = true)。
    • 每次整除后更新 n 的值,并在质因数确定时将其相关信息(出现次数和本身的值)存入 a 向量,并更新 x 的值(x 记录所有不同质因数的乘积)。
    • 如果在遍历完 sqrt(n) 后 n 仍大于 1,说明还有一个大于 sqrt(n) 的质因数,也将其存入 a 向量并更新 x 。
  2. main 函数:

    • 首先进行一些输入输出流的设置,以提高效率。
    • 读入测试用例的数量 t 。
    • 在每次测试用例中:
      • 初始化 x 为 1 ,并清空 a 向量。
      • 读入要分解的整数 n ,调用 cal 函数进行质因数分解。
      • 对 a 向量按照指数(即 pair 的第一个元素)进行排序。
      • 计算答案 ans :通过遍历 a 向量,根据当前质因数的指数与之前已记录的指数 mi 的差值,乘以 x 的值来累计答案,并更新 mi 和 x 。如果 x 变为 1 则提前结束循环。
      • 输出本次测试用例的答案。

来点gcd

题目描述

来点gcd (nowcoder.com)

运行代码

#include <bits/stdc++.h>
using namespace std;
const int N = 1e6+10;
int n,m,x,h[N];
int main(){
	int t;
	scanf("%d",&t);
	while(t--){
		for(int i=0;i<=n;i++) h[i]=0;
		scanf("%d%d",&n,&m);
		for(int i=1;i<=n;i++){
			scanf("%d",&x);
			h[x]++;
		}
		while(m--){
			scanf("%d",&x);
			int p=0;
			for(int i=x;i<=n&&p!=x;i+=x){
				if(h[i]) p=__gcd(i,p);
			}
			if(p==x) puts("YES");
			else puts("NO"); 
		}
	}
	return 0;
}

代码思路

  • 定义了一个 gcd 函数来计算两个数的最大公约数。
  • 在主函数中,首先读入测试用例的数量 t 。
  • 对于每个测试用例,先初始化 h 数组,然后读入两个整数 n 和 m ,并记录数字的出现次数。
  • 对于 m 次询问,通过循环计算与给定数字 x 相关的最大公约数,并根据结果输出相应的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

筱姌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值