机器学习:XGBoost

本文深入探讨了XGBoost的核心原理,包括目标函数的二阶泰勒展开、正则项定义、决策树结构以及XGBoost与GBDT的区别。通过引入二阶导数信息和正则项,XGBoost有效地防止过拟合,提高模型泛化能力。同时,XGBoost的优化算法和并行计算特性使其在效率和性能上超越传统GBDT。
摘要由CSDN通过智能技术生成

机器学习 深度学习 NLP 搜索推荐 等 索引目录


上一篇博文提到XGBoost是GBDT的扩展和改进,在GBDT中只用了一阶导信息,XGBoost中考虑了二阶导信息,对Loss Function做了二阶泰勒展开,并在目标函数上加入了正则项,用以权衡目标函数的下降和模型的复杂度,避免过拟合。

1、目标函数

J ( f t ) = ∑ i = 1 n L ( y i , y ^ i ( t − 1 ) + f t ( x i ) ) + Ω ( f t ) + C ( 式 1 ) J(f_{t})=\sum_{i=1}^{n}L(y_{i},\hat{y}_{i}^{(t-1)}+f_{t}(x_{i}))+\Omega (f_{t})+C (式1) J(ft)=i=1nL(yi,y^i(t1)+ft(xi))+Ω(ft)+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值