上一篇博文提到XGBoost是GBDT的扩展和改进,在GBDT中只用了一阶导信息,XGBoost中考虑了二阶导信息,对Loss Function做了二阶泰勒展开,并在目标函数上加入了正则项,用以权衡目标函数的下降和模型的复杂度,避免过拟合。
1、目标函数
J ( f t ) = ∑ i = 1 n L ( y i , y ^ i ( t − 1 ) + f t ( x i ) ) + Ω ( f t ) + C ( 式 1 ) J(f_{t})=\sum_{i=1}^{n}L(y_{i},\hat{y}_{i}^{(t-1)}+f_{t}(x_{i}))+\Omega (f_{t})+C (式1) J(ft)=i=1∑nL(yi,y^i(t−1)+ft(xi))+Ω(ft)+