Numpy与Pytorch 矩阵操作

Numpy

  • 随机矩阵: np.random.randn(d0, d1, d2, ...)
  • 矩阵大小与形状: np.ndarray.sizenp.dnarray.shape

Pytorch

  • 随机矩阵: torch.randn(d0, d1, d2, ...)
  • 添加维度: tensor.unsqueeze(0)
  • 压缩维度: tensor.squeeze(0)
  • 按维度拼接tensor: torch.cat(inputs, dim=0, ...)
  • 维度堆叠: torch.stack(inputs, dim=0)
  • 张量排序索引: tensor.sort(descending=True) 返回一个tensor为排序后的tensor, 一个为index_tensor
  • 矩阵元素夹逼: tensor.clamp()
  • 矩阵切割: torch.chunk(tensor, chunks, dim)
  • 矩阵复制: torch.repeat(*size)
  • 生成零矩阵: torch.torch.zeros(5, 3, dtype=torch.long)
  • 生产同形状的随机矩阵:x = torch.randn_like(x, dtype=torch.float)
  • 矩阵中函数名以’_’结尾的,如:y.add_(x),运算结束后会改变y本身
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值