梯度提升决策树——Gradient Boosting Decision Tree(GBDT)

1. GBDT概述

  GBDT也是集成学习Boosting家族的成员,但是却和传统的Adaboost有很大的不同。回顾下Adaboost,我们是利用前一轮迭代弱学习器的误差率来更新训练集的权重,这样一轮轮的迭代下去。GBDT也是迭代,使用了前向分布算法,但是弱学习器限定了只能使用CART回归树模型,同时迭代思路和Adaboost也有所不同。

  在GBDT的迭代中,假设我们前一轮迭代得到的强学习器是 ft1(x) f t − 1 ( x ) , 损失函数是 L(y,ft1(x)) L ( y , f t − 1 ( x ) ) , 我们本轮迭代的目标是找到一个CART回归树模型的弱学习器 ht(x) h t ( x ) ,让本轮的损失损失 L(y,ft1(x))=L(y,ft1(x)+ht(x)) L ( y , f t − 1 ( x ) ) = L ( y , f t − 1 ( x ) + h t ( x ) ) 最小。也就是说,本轮迭代找到决策树,要让样本的损失尽量变得更小。

  GBDT的思想可以用一个通俗的例子解释,假如有个人30岁,我们首先用20岁去拟合,发现损失有10岁,这时我们用6岁去拟合剩下的损失,发现差距还有4岁,第三轮我们用3岁拟合剩下的差距,差距就只有一岁了。如果我们的迭代轮数还没有完,可以继续迭代下面,每一轮迭代,拟合的岁数误差都会减小。

  从上面的例子看这个思想还是蛮简单的,但是有个问题是这个损失的拟合不好度量,损失函数各种各样,怎么找到一种通用的拟合方法呢?

2. GBDT的负梯度拟合

  在上一节中,我们介绍了GBDT的基本思路,但是没有解决损失函数拟合方法的问题。针对这个问题,大牛Freidman提出了用损失函数的负梯度来拟合本轮损失的近似值,进而拟合一个CART回归树。第t轮的第i个样本的损失函数的负梯度表示为

rti=[L(yi,f(xi))f(xi)]f(x)=ft1(x) r t i = − [ ∂ L ( y i , f ( x i ) ) ∂ f ( x i ) ] f ( x ) = f t − 1 ( x )

  利用 (xi,rti)(i=1,2,m) ( x i , r t i ) ( i = 1 , 2 , … m ) ,我们可以拟合一颗CART回归树,得到了第t颗回归树,其对应的叶节点区域 Rtj,j=1,2,..J R t j , j = 1 , 2 , . . J 。其中J为叶子节点的个数。
  针对每一个叶子节点里的样本,我们求出使损失函数最小,也就是拟合叶子节点最好的的输出值ctj如下:

ctj=argmincxiRtjL(yi,ft1(xi)+c) c t j = a r g m i n ⏟ c ∑ x i ∈ R t j ⁡ L ( y i , f t − 1 ( x i ) + c )

  这样我们就得到了本轮的决策树拟合函数如下:

ht=j=1JctjI(xRtj) h t = ∑ j = 1 J ⁡ c t j I ( x ∈ R t j )

  从而本轮最终得到的强学习器的表达式如下:

ft(x)=ft1(x)+j=1JctjI(xRtj) f t ( x ) = f t − 1 ( x ) + ∑ j = 1 J ⁡ c t j I ( x ∈ R t j )

  通过损失函数的负梯度来拟合,我们找到了一种通用的拟合损失误差的办法,这样无轮是分类问题还是回归问题,我们通过其损失函数的负梯度的拟合,就可以用GBDT来解决我们的分类回归问题。区别仅仅在于损失函数不同导致的负梯度不同而已。

3. GBDT回归算法

  好了,有了上面的思路,下面我们总结下GBDT的回归算法。为什么没有加上分类算法一起?那是因为分类算法的输出是不连续的类别值,需要一些处理才能使用负梯度,我们在下一节讲。
  输入是训练集样本 T={(x1,y1),(x2,y2),(xm,ym)} T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , … ( x m , y m ) } , 最大迭代次数 T T , 损失函数L
  输出是强学习器 f(x) f ( x )

  1. 初始化弱学习器
    f0=argminci=1mL(yi,c) f 0 = a r g m i n ⏟ c ∑ i = 1 m ⁡ L ( y i , c )    
  2. . 对迭代轮数 t=1,2,...T t = 1 , 2 , . . . T 有:

 a)对样本 i=1,2...m i = 1 , 2 , . . . m ,计算负梯度
rti=[L(yi,f(xi))f(xi)]f(x)=ft1(x) r t i = − [ ∂ L ( y i , f ( x i ) ) ∂ f ( x i ) ] f ( x ) = f t − 1 ( x )

 b)利用 (xi,rti)(i=1,2,m) ( x i , r t i ) ( i = 1 , 2 , … m ) , 拟合一颗CART回归树,得到第t颗回归树,其对应的叶子节点区域为 Rtj,j=1,2,..J R t j , j = 1 , 2 , . . J 。其中J为回归树t的叶子节点的个数。

 c) 对叶子区域 j=1,2,..J j = 1 , 2 , . . J ,计算最佳拟合值
ctj=argmincxiRtjL(yi,ft1(xi)+c) c t j = a r g m i n ⏟ c ∑ x i ∈ R t j ⁡ L ( y i , f t − 1 ( x i ) + c )

 d) 更新强学习器
ft(x)=ft1(x)+j=1JctjI(xRtj) f t ( x ) = f t − 1 ( x ) + ∑ j = 1 J ⁡ c t j I ( x ∈ R t j )
  3. 得到强学习器f(x)的表达式
f(x)=fT=f0(x)+t=1Tj=1JctjI(xRtj) f ( x ) = f T = f 0 ( x ) + ∑ t = 1 T ⁡ ∑ j = 1 J ⁡ c t j I ( x ∈ R t j )

  算法第一步获得使得损失函数最小的常数估计值,是一个只有根节点的树;2(a)计算损失函数的负梯度在当前模型的值,将它作为残差估计,2(b)利用 xi x i 和2(a)中得到的残差组成新的集合 (xi,rti) ( x i , r t i ) 来拟合一个CART回归树,逼近残差的近似值,2(c)利用线性搜索估计回归树叶节点区域的值,使损失函数最小化,2(d)更新回归树;第三步获得输出的最终模型。2(a),2(b)可相当于CART回归树生成算法

4. GBDT分类算法

  这里我们再看看GBDT分类算法,GBDT的分类算法从思想上和GBDT的回归算法没有区别,但是由于样本输出不是连续的值,而是离散的类别,导致我们无法直接从输出类别去拟合类别输出的误差。
  为了解决这个问题,主要有两个方法,一个是用指数损失函数,此时GBDT退化为Adaboost算法。另一种方法是用类似于逻辑回归的对数似然损失函数的方法。也就是说,我们用的是类别的预测概率值和真实概率值的差来拟合损失。本文仅讨论用对数似然损失函数的GBDT分类。而对于对数似然损失函数,我们又有二元分类和多元分类的区别。

4.1 二元GBDT分类算法

  对于二元GBDT,如果用类似于逻辑回归的对数似然损失函数,则损失函数为:
L(y,f(x))=log(1+exp(yf(x))) L ( y , f ( x ) ) = log ⁡ ( 1 + e x p ( − y f ( x ) ) )
  其中 y{1,+1} y ∈ { − 1 , + 1 } 。则此时的负梯度误差为
  
rti=[L(yi,f(xi))f(xi)]f(x)=ft1(x)=yi(1+exp(yi,f(xi))) r t i = − [ ∂ L ( y i , f ( x i ) ) ∂ f ( x i ) ] f ( x ) = f t − 1 ( x ) = y i ( 1 + e x p ( y i , f ( x i ) ) )   

  对于生成的决策树,我们各个叶子节点的最佳残差拟合值为
  
ctj=argmincxiRtjlog(1+exp(yi(ft1(xi)+c))) c t j = a r g m i n ⏟ c ∑ x i ∈ R t j ⁡ log ⁡ ( 1 + e x p ( − y i ( f t − 1 ( x i ) + c ) ) )

  由于上式比较难优化,我们一般使用近似值代替
  
ctj=xiRtjrtixiRtj|rti|(1|rti|) c t j = ∑ x i ∈ R t j ⁡ r t i ∑ x i ∈ R t j ⁡ | r t i | ( 1 − | r t i | )

  除了负梯度计算和叶子节点的最佳残差拟合的线性搜索,二元GBDT分类和GBDT回归算法过程相同。

4.2 多元GBDT分类算法

  多元GBDT要比二元GBDT复杂一些,对应的是多元逻辑回归和二元逻辑回归的复杂度差别。假设类别数为K,则此时我们的对数似然损失函数为:
L(y,f(x))=k=1Kyklogpk(x) L ( y , f ( x ) ) = − ∑ k = 1 K ⁡ y k log ⁡ p k ( x )

  其中如果样本输出类别为k,则 yk=1 y k = 1 。第k类的概率pk(x)的表达式为:
  
pk(x)=exp(fk(x))Kl=1exp(fl(x)) p k ( x ) = e x p ( f k ( x ) ) ∑ l = 1 K ⁡ e x p ( f l ( x ) )

  集合上两式,我们可以计算出第t轮的第i个样本对应类别l的负梯度误差为
  
rtil=[L(yi,f(xi))f(xi)]fk(x)=fl,t1(x)=yilpl,t1(xi) r t i l = − [ ∂ L ( y i , f ( x i ) ) ∂ f ( x i ) ] f k ( x ) = f l , t − 1 ( x ) = y i l − p l , t − 1 ( x i )

  观察上式可以看出,其实这里的误差就是样本i对应类别l的真实概率和t−1轮预测概率的差值。

  对于生成的决策树,我们各个叶子节点的最佳残差拟合值为
  
ctjl=argminctjli=0mk=1KL(yk,ft1,l(x)+j=0JcjlI(xiRtj)) c t j l = a r g m i n ⏟ c t j l ∑ i = 0 m ⁡ ∑ k = 1 K ⁡ L ( y k , f t − 1 , l ( x ) + ∑ j = 0 J ⁡ c j l I ( x i ∈ R t j ) )

  由于上式比较难优化,我们一般使用近似值代替
  
ctjl=K1KxiRtjlrtilxiRtjl|rtil|(1|rtil|) c t j l = K − 1 K ∑ x i ∈ R t j l ⁡ r t i l ∑ x i ∈ R t j l ⁡ | r t i l | ( 1 − | r t i l | )

  除了负梯度计算和叶子节点的最佳残差拟合的线性搜索,多元GBDT分类和二元GBDT分类以及GBDT回归算法过程相同。

5. GBDT常用损失函数

  这里我们再对常用的GBDT损失函数做一个总结。

  对于分类算法,其损失函数一般有对数损失函数和指数损失函数两种:

  a) 如果是指数损失函数,则损失函数表达式为
  
L(y,f(x))=exp(yf(x)) L ( y , f ( x ) ) = e x p ( − y f ( x ) )

  其负梯度计算和叶子节点的最佳残差拟合参见Adaboost原理篇。

  b) 如果是对数损失函数,分为二元分类和多元分类两种,参见4.1节和4.2节。

  对于回归算法,常用损失函数有如下4种:

  a)均方差,这个是最常见的回归损失函数了
  
L(y,f(x))=(yf(x))2 L ( y , f ( x ) ) = ( y − f ( x ) ) 2

  b)绝对损失,这个损失函数也很常见
L(y,f(x))=|yf(x)| L ( y , f ( x ) ) = | y − f ( x ) |

  对应负梯度误差为:
sign(yif(xi)) s i g n ( y i − f ( x i ) )

  c) Huber损失,它是均方差和绝对损失的折衷产物,对于远离中心的异常点,采用绝对损失,而中心附近的点采用均方差。这个界限一般用分位数点度量。损失函数如下:
  
L(y,f(x))=12(yf(x))2,|yf(x)|δδ(|yf(x)|δ2),|yf(x)|>δ L ( y , f ( x ) ) = { 1 2 ( y − f ( x ) ) 2 , | y − f ( x ) | ⩽ δ δ ( | y − f ( x ) | − δ 2 ) , | y − f ( x ) | > δ

  对应的负梯度误差为:

r(yi,f(xi))={yif(xi),|yf(x)|δδsign(yif(xi)),|yf(x)|>δ r ( y i , f ( x i ) ) = { y i − f ( x i ) , | y − f ( x ) | ⩽ δ δ s i g n ( y i − f ( x i ) ) , | y − f ( x ) | > δ

  d) 分位数损失。它对应的是分位数回归的损失函数,表达式为
  
L(y,f(x))=yf(x)θ|yf(x)|+y<f(x)(1θ)|yf(x)| L ( y , f ( x ) ) = ∑ y ⩾ f ( x ) ⁡ θ | y − f ( x ) | + ∑ y < f ( x ) ⁡ ( 1 − θ ) | y − f ( x ) |

  其中θ为分位数,需要我们在回归前指定。对应的负梯度误差为:
  
r(yi,f(xi))={θ,yif(xi)θ1,yi<f(xi) r ( y i , f ( x i ) ) = { θ , y i ⩾ f ( x i ) θ − 1 , y i < f ( x i )

  对于Huber损失和分位数损失,主要用于健壮回归,也就是减少异常点对损失函数的影响。

6. GBDT的正则化

  和Adaboost一样,我们也需要对GBDT进行正则化,防止过拟合。GBDT的正则化主要有三种方式。
  第一种是和Adaboost类似的正则化项,即步长(learning rate)。定义为ν,对于前面的弱学习器的迭代
fk(x)=fk1(x)+hk(x) f k ( x ) = f k − 1 ( x ) + h k ( x )

  如果我们加上了正则化项,则有  
fk(x)=fk1(x)+vhk(x) f k ( x ) = f k − 1 ( x ) + v h k ( x )

   v v 的取值范围为0<v1。对于同样的训练集学习效果,较小的ν意味着我们需要更多的弱学习器的迭代次数。通常我们用步长和迭代最大次数一起来决定算法的拟合效果。
  第二种正则化的方式是通过子采样比例(subsample)。取值为(0,1]。注意这里的子采样和随机森林不一样,随机森林使用的是放回抽样,而这里是不放回抽样。如果取值为1,则全部样本都使用,等于没有使用子采样。如果取值小于1,则只有一部分样本会去做GBDT的决策树拟合。选择小于1的比例可以减少方差,即防止过拟合,但是会增加样本拟合的偏差,因此取值不能太低。推荐在[0.5, 0.8]之间。
  使用了子采样的GBDT有时也称作随机梯度提升树(Stochastic Gradient Boosting Tree, SGBT)。由于使用了子采样,程序可以通过采样分发到不同的任务去做boosting的迭代过程,最后形成新树,从而减少弱学习器难以并行学习的弱点。
  第三种是对于弱学习器即CART回归树进行正则化剪枝。在决策树原理篇里我们已经讲过,这里就不重复了。

7. GBDT小结

  GBDT终于讲完了,GDBT本身并不复杂,不过要吃透的话需要对集成学习的原理,决策树原理和各种损失函树有一定的了解。由于GBDT的卓越性能,只要是研究机器学习都应该掌握这个算法,包括背后的原理和应用调参方法。目前GBDT的算法比较好的库是xgboost。当然scikit-learn也可以。
  
  最后总结下GBDT的优缺点。
  
  GBDT主要的优点有:

  1. 可以灵活处理各种类型的数据,包括连续值和离散值。
  2. 在相对少的调参时间情况下,预测的准备率也可以比较高。这个是相对SVM来说的。
  3. 使用一些健壮的损失函数,对异常值的鲁棒性非常强。比如 Huber损失函数和Quantile损失函数。

  GBDT的主要缺点有:
  由于弱学习器之间存在依赖关系,难以并行训练数据。不过可以通过自采样的SGBT来达到部分并行。
  
  以上就是GBDT的原理总结,后面会讲GBDT的scikit-learn调参,敬请期待。

参考

本文转载自https://www.cnblogs.com/pinard/p/6140514.html#!comments#undefined
同时也可参考https://blog.csdn.net/shine19930820/article/details/65633436

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值