Alex doesn't like boredom. That's why whenever he gets bored, he comes up with games. One long winter evening he came up with a game and decided to play it.
Given a sequence a consisting of n integers. The player can make several steps. In a single step he can choose an element of the sequence (let's denote it ak) and delete it, at that all elements equal to ak + 1 and ak - 1 also must be deleted from the sequence. That step brings ak points to the player.
Alex is a perfectionist, so he decided to get as many points as possible. Help him.
The first line contains integer n (1 ≤ n ≤ 105) that shows how many numbers are in Alex's sequence.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 105).
Print a single integer — the maximum number of points that Alex can earn.
2 1 2
2
3 1 2 3
4
9 1 2 1 3 2 2 2 2 3
10
Consider the third test example. At first step we need to choose any element equal to 2. After that step our sequence looks like this[2, 2, 2, 2]. Then we do 4 steps, on each step we choose any element equals to 2. In total we earn 10 points.
题意:
给出 n(1 ~ 10 ^ 5) 个数,后给出这 n 个数,每次取一个数 k,取的同时,k - 1 与 k + 1 也会消失。每次取的数为本次取的分数,最后使求和的结果最大。
思路:
DP。dp [ i ] = MAX { dp [ i - 1 ] , Max { dp [ 1 ] …… dp [ i - 2 ] } + num [ i ] } ,最后输出 dp [ 100000 ] 即为答案。
AC:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
ll num[100005];
int main () {
int n;
scanf("%d", &n);
memset(num, 0, sizeof(num));
for (int i = 0; i < n; ++i) {
int ans;
scanf("%d", &ans);
num[ans] += (ll)ans;
}
ll Max = 0;
Max = max(Max, num[1]);
for (int i = 3; i <= 100000; ++i) {
Max = max(num[i - 2], Max);
num[i] = max(num[i] + Max, num[i - 1]);
}
printf("%I64d\n", num[100000]);
return 0;
}