倍增算法,时间复杂度O(nlogn)
sa从小到大保存相对大小的下标
理解LSD,x数组,sa数组
char s[maxn];
int sa[maxn],t[maxn],t2[maxn],c[maxn],n;
void build_sa(int m)
{
//LSD基数排序
int *x=t,*y=t2;//x数组保存rank
//字串长度为1,即对每个元素的大小排序
for(int i=0;i<m;++i) c[i]=0;//计数数组清空
for(int i=0;i<n;++i) c[x[i]=s[i]]++;//统计出现次数
for(int i=1;i<m;++i) c[i]+=c[i-1];//计算前缀和
for(int i=n-1;i>=0;--i) sa[--c[x[i]]]=i;//sa从小到大保存每个元素的下标
for(int k=1;k<=n;k<<=1){//k为要排序的子串长
//排序第二关键字
int p=0; //y[]从小到大保存第二关键字的下标
for(int i=n-k;i<n;++i) y[p++]=i;//从第n-k位开始的字串,第二关键字为0
for(int i=0;i<n;++i) if(sa[i]>=k) y[p++]=sa[i]-k;
//只有下标大于k的第sa[i]个字符串的rank才能作为下一行的第sa[i]-k个字符串的第二关键字
//排序第一关键字
//x[y[i]]是引用第一关键字,根据LSD第二次排序要在第一次的基础上
for(int i=0;i<m;++i) c[i]=0;//计数数组清空
for(int i=0;i<n;++i) c[x[y[i]]]++;//统计rank出现次数
for(int i=1;i<m;++i) c[i]+=c[i-1];//求前缀和
for(int i=n-1;i>=0;--i) sa[--c[x[y[i]]]]=y[i];//sa[]从小到大保存双关键字的下标
p=1;swap(x,y);x[sa[0]]=0;//交换x,y数组 x[]数组从0到n-1保存rank值(0到p)
for(int i=1;i<n;++i){
x[sa[i]]=y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k] ? p-1:p++;//注意p-1
//由于p是计数rank值不同的字符串的数量,因此双关键字相同的串视为一样的rank
}
if(p>=n) break; //p个字符串的rank值都不同 ,p>=n时说明大小确立,以后即使倍增,sa也不会改变
m=p;//用来下次基数排序的最大值
}
}
————————————————————————————————————--————————
————————————————————————————————————————————
void build_sa()
{
int *x=t,*y=t2;
for(int i=0;i<m;++i) c[i]=0;
for(int i=0;i<n;++i) c[x[i]=y[i]]++;
for(int i=1;i<m;++i) c[i]+=c[i-1];
for(int i=n-1;i>=0;--i) sa[--c[x[i]]]=i;
for(int k=1;k<=n;k<<=1){
int p=0;
for(int i=n-k;i<n;++i) y[p++]=i;
for(int i=0;i<n;++i) if(sa[i]>=k) y[p++]=sa[i]-k;
for(int i=0;i<m;++i) c[i]=0;
for(int i=0;i<n;++i) c[x[y[i]]]++;
for(int i=1;i<m;++i) c[i]+=c[i-1];
for(int i=n-1;i>=0;--i) sa[--c[x[y[i]]]]=y[i];
int p=0;swap(x,y);x[sa[0]]=0;
for(int i=1;i<n;++i){
x[sa[i]]=y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k] p-1:p++;
}
if(p>=n) break;
m=p;
}
}
int m;
int cmp_suffix(char *pattern,int p)
{
return strncmp(pattern,s+sa[p],m);
}
int find(char *p)
{
m=strlen(p);
if(cmp_suffix(p,0)<0) return -1;
if(cmp_suffix(p,n-1)>0) return -1;
int l=0,r=n-1;
while(l<=r){
int mid=l+(r-l)/2;
int res=cmp_suffix(p,mid);
if(!res) return mid;
if(res>0) l=mid+1;
if(res<0) r=mid-1;
}
return -1;
}
/*
设suffix(k)是排在suffix(i-1)前一名的后缀,则它们的最长公共前缀是h[i-1]
。那么suffix(k+1)将排在suffix(i)的前面(这里要求h[i-1]>1,如果h[i-1]≤
1,原式显然成立)并且suffix(k+1)和suffix(i)的最长公共前缀是h[i-1]-1,
所以suffix(i)和在它前一名的后缀的最长公共前缀至少是h[i-1]-1。按照h[1]
,h[2],……,h[n]的顺序计算,并利用h数组的性质,时间复杂度可以降为O
(n)。
*/
void get_height()
{
for(int i=0;i<n;++i) rank[sa[i]]=i;
int k=0;
for(int i=0;i<n;++i){
if(k) k--;
int j=sa[rank[i]]-1;
while(s[j+k]==s[i+k]) k++;
height[rank[i]]=k;
}
}