http://poj.org/problem?id=1459
长篇阅读。。。
题目描述:
一个电网包含一些结点(电站、消费者、调度站),这些结点通过电线连接。每个结点u 可能
被供给s(u)的电能,s(u)≥0;同时也可能产生p(u)的电能,0≤p(u)≤pmax(u);站点u 还有可能
消费c(u)电能,0≤c(u)≤min( s(u), cmax(u) );可能传输d(u)的电能,d(u) = s(u) + p(u) - c(u)。
以上这些量存在以下限制关系:对每个电站,c(u) = 0;对每个消费者,p(u) = 0;对每个调度站,
p(u) = c(u) = 0。
在电网中两个结点u 和v 之间最多有一条电线连接。从结点u 到结点v 传输L(u,v)的电能,0≤L(u,v)≤Lmax(u,v)。定义Con 为c(u)的总和,表示电网中消费电能的总和。本题的目的是求
Con 的最大值。
电网的一个例子如图6.24 所示。在图(a)中,电站结点u 的标记”x/y”代表p(u) = x、pmax(u) =
y。消费者结点u 的标记”x/y”代表c(u) = x、cmax(u) = y。每条电线所对应的边(u,v),其标记”x/y”
代表L(u,v) = x、Lmax(u,v) = y。在图(b)中,消费的最大电能Con = 6,图(a)列出了在此状态下各
个站点的s(u)、p(u)、c(u)和d(u)。注意,如图(b)所示的电网中,电能的流动还存在其他状态,但
消费的电能总和不超过6。
输入描述:
输入文件中包含多个测试数据。每个测试数据描述了一个电网。每个测试数据的第1 行为4
个整数:n np nc m,其中,0≤n≤100,代表结点数目;0≤np≤n,代表电站数目;0≤nc≤n,
代表消费者数目;0≤m≤n2,代表传输电线的数目。接下来有m 个三元组,(u,v)z,其中u 和v
为结点序号(结点序号从0 开始计起),0≤z≤1000,代表Lmax(u,v)的值。接下来有np 个二元
组,(u)z,其中u 为电站结点的序号,0≤z≤10000,代表pmax(u)的值;每个测试数据的最后是
nc 个二元组,(u)z,其中u 为消费者结点的序号,0≤z≤10000,代表cmax(u)的值。所有数据
都是整数。除三元组(u,v)z 和二元组(u)z 中不含空格外,输入文件中其他位置允许出现空格。测试
数据一直到文件尾。
输出描述:
对输入文件中每个测试数据所描述的电网,输出占一行,为一个整数,表示电网中能消费电
能的最大值。
原图中的电站,消费者不能作为源点和汇点,添加一个源点和汇点,源点到电站的容量为pmax,消费者到汇点的容量为cmax,则原题就转化为求解最大流了
题目的输入用正则表达式sscanf(s,”(%d,%d)%d”,&u,&v,&z);
ISAP…
Memory: 1060K Time: 110MS
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
const int maxn=110;
const int maxm=1010;
const int INF=0x3f3f3f3f;
using namespace std;
int n,s,t;
struct Edge{
int from,to,cap,flow;
Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};
vector<Edge> edges;
vector<int> G[maxn];
int gap[maxn],d[maxn],cur[maxn],p[maxn];
inline void addedge(int u,int v,int c){
edges.push_back(Edge(u,v,c,0));
edges.push_back(Edge(v,u,0,0));
int m=edges.size();
G[u].push_back(m-2);
G[v].push_back(m-1);
}
int ISAP(){
s=n,t=n+1;
n+=2;
memset(cur,0,sizeof(cur));
memset(d,0,sizeof(d));
memset(gap,0,sizeof(gap));
int x=s,flow=0,a=INF;
while(d[s]<n){
if(x==t){
flow+=a;
while(x!=s){
edges[p[x]].flow+=a;
edges[p[x]^1].flow-=a;
x=edges[p[x]].from;
}
a=INF;
}
int ok=0;
for(int i=cur[x];i<G[x].size();++i){
Edge& e=edges[G[x][i]];
if(e.cap>e.flow&&d[e.to]+1==d[x]){
p[e.to]=G[x][i];
cur[x]=i;
x=e.to;
ok=1;
a=min(a,e.cap-e.flow);
break;
}
}
if(!ok){
int m=n;
for(int i=0;i<G[x].size();++i){
Edge& e =edges[G[x][i]];
if(e.cap>e.flow) m=min(m,d[e.to]);
}
if(--gap[d[x]]==0) break;
gap[d[x]=m+1]++;
cur[x]=0;
if(x!=s) x=edges[p[x]].from;
}
}
return flow;
}
void Init(){
edges.clear();
for(int i=0;i<maxn;++i) G[i].clear();
}
int main()
{
int np,nc,m;
while(scanf("%d%d%d%d",&n,&np,&nc,&m)!=EOF){
Init();
int u,v,z;
char s[10];
for(int i=0;i<m;++i){
scanf("%s",s);sscanf(s,"(%d,%d)%d",&u,&v,&z);
addedge(u,v,z);
}
for(int i=0;i<np;++i){
scanf("%s",s);
sscanf(s,"(%d)%d",&u,&z);
addedge(n,u,z);
}
for(int i=0;i<nc;++i){
scanf("%s",s);
sscanf(s,"(%d)%d",&u,&z);
addedge(u,n+1,z);
}
int ans=ISAP();
cout<<ans<<endl;
}
return 0;
}