自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(24)
  • 收藏
  • 关注

转载 神经网络搭建

<div id="post_detail"> 神经网络优化(二) - 搭建神经网络八股 为提高程序的可复用性,搭建模块化的神经网络八股1 前向传播前向传播就是设计、搭建从输入(参数 x ) 到输出(返回值为预测或分类结果 y )的完整网络结构,实现前向传播过程,一般将其放在 forward.py 文件中前向传播需要...

2019-04-27 21:23:44 266

原创 神经网络搭建

神经网络搭建搭建模块化的神经网络八股:1、前向传播就是搭建网络,设计网络结构。(forward.py)def forward(x, regularizer):w =b =y =return ydef get_weight(shape,regularizer):w = tf.Variable()tf.add_to_collection(‘losses’,tf.contrib.la...

2019-04-26 21:58:22 391

原创 Google gsuti 工具

Google gsuti 工具欢迎使用Markdown编辑器sudo apt-get install aria2aria2c -c 新的改变我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:全新的界面设计 ,将会带来全新的写作体验;在创作中心设置你喜爱的代码高亮样式,Markdown 将代码片...

2019-04-19 10:43:34 336

转载 滑动平均模型

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/PKU_Jade/article/details/73477112 Maintains moving averages of variables by employin...

2018-10-22 15:58:47 2633

转载 python os.path模块常用方法详解

python os.path模块常用方法详解 os.path模块主要用于文件的属性获取,在编程中经常用到,以下是该模块的几种常用方法。更多的方法可以去查看官方文档:http://docs.python.org/library/os.path.html1.os.path.abspath(path) 返回path规范化的绝对路径。 &amp;nbsp;&amp;gt;&amp;gt;&amp;...

2018-09-23 16:00:04 217

转载 记录下os.path.dirname(__file__)使用

记录下os.path.dirname(file)使用os.path.dirname(__file__)使用该测试脚本所在的位置:D:\第1层\第2层\第3层\第4层\第5层\test11.pytest11.pyimport os#该文件所在位置:D:\第1层\第2层\第3层\第4层\第5层\test11.pypath1 = os.path.dirname(file)print(p...

2018-09-23 15:50:35 962

转载 Linux系统(Ubuntu16.04)ssh配置无密码登录

Linux系统(Ubuntu16.04)ssh配置无密码登录这 Linux系统(Ubuntu16.04)ssh配置无密码登录欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不...

2018-09-21 15:44:38 315

原创 二进制求和

给定两个二进制字符串,返回他们的和(用二进制表示)。输入为非空字符串且只包含数字 1 和 0。示例 1:输入: a = "11", b = "1"输出: "100"示例 2:输入: a = "1010", b = "1011"输出: "10101" 解法 C++:思路:两个指针分别指向a和b的末尾,然后每次取出一个字符,转为数字,若无法取出字符则按0

2018-09-13 11:08:14 361

原创 1001. 害死人不偿命的(3n+1)猜想 (15)

卡拉兹(Callatz)猜想:对任何一个自然数n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把(3n+1)砍掉一半。这样一直反复砍下去,最后一定在某一步得到n=1。卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证(3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学

2018-01-27 17:00:11 138

转载 Caffe代码阅读——层次结构

Caffe代码的主线结构抽象SyncedMem:这个类的主要功能是封装CPU和GPU的数据交互操作。一般来说,数据的流动形式都是:硬盘->CPU内存->GPU内存->CPU内存->(硬盘),所以在写代码的过程中经常会写CPU/GPU之间数据传输的代码,同时还要维护CPU和GPU两个处理端的内存指针。这些事情处理起来不会很难,但是会很繁琐。因此SyncedMem的出现就是把CPU/GPU的数据传输操作

2017-11-20 19:50:39 273

原创 C3D

#include<iostream> #include<stdio.h> #include<vector> #include<fstream> #include<opencv2/opencv.hpp> #define video_index_max 101 /************************************************************

2017-11-05 15:22:22 954

转载 caffe的python接口学习(8):caffemodel中的参数及特征的抽取

如果用公式 y=f(wx+b)来表示整个运算过程的话,那么w和b就是我们需要训练的东西,w称为权值,在cnn中也可以叫做卷积核(filter),b是偏置项。f是激活函数,有sigmoid、relu等。x就是输入的数据。数据训练完成后,保存的caffemodel里面,实际上就是各层的w和b值。我们运行代码:deploy=root + 'mnist/deploy.prototxt' #deplo

2017-10-31 09:51:36 244

转载 caffe的python接口学习(7):绘制loss和accuracy曲线

使用python接口来运行caffe程序,主要的原因是python非常容易可视化。所以不推荐大家在命令行下面运行python程序。如果非要在命令行下面运行,还不如直接用 c++算了。推荐使用jupyter notebook,spyder等工具来运行python代码,这样才和它的可视化完美结合起来。因为我是用anaconda来安装一系列python第三方库的,所以我使用的是spyder,与matlab

2017-10-31 09:45:07 246

转载 caffe的python接口学习(5):生成deploy文件

如果要把训练好的模型拿来测试新的图片,那必须得要一个deploy.prototxt文件,这个文件实际上和test.prototxt文件差不多,只是头尾不相同而也。deploy文件没有第一层数据输入层,也没有最后的Accuracy层,但最后多了一个Softmax概率层。这里我们采用代码的方式来自动生成该文件,以mnist为例。 deploy.py# -*- coding: utf-8 -*-from

2017-10-31 09:37:13 201

转载 caffe的python接口学习(3):训练模型(training)

如果不进行可视化,只想得到一个最终的训练model, 那么代码非常简单,如下 :import caffecaffe.set_device(0)caffe.set_mode_gpu()solver = caffe.SGDSolver('/home/xxx/data/solver.prototxt')solver.solve()

2017-10-30 23:07:17 264

转载 caffe的python接口学习(2):生成solver文件

caffe在训练的时候,需要一些参数设置,我们一般将这些参数设置在一个叫solver.prototxt的文件里面,如下:base_lr: 0.001display: 782gamma: 0.1lr_policy: “step”max_iter: 78200momentum: 0.9snapshot: 7820snapshot_prefix: “snapshot”solver_mode

2017-10-30 23:06:06 184

转载 caffe的python接口学习(1):生成配置文件

数据预处理图像数据转换成db(leveldb/lmdb)文件:原始数据是图片文件,如jpg,jpeg,png,tif等格式的,而且有可能图片的大小还不一致。而在caffe中经常使用的数据类型是lmdb或leveldb,因此就产生了这样的一个问题:如何从原始图片文件转换成caffe中能够运行的db(leveldb/lmdb)文件?在caffe中,作者为我们提供了这样一个文件:convert_image

2017-10-30 23:04:37 289

原创 3D CNN框架结构各层详细计算过程

2D CNN和3D CNN的区别2D CNN: 利用2D CNN对视频进行操作,一般是对视频的每一帧图像分别利用CNN来进行识别,这种方式的识别不会考虑时间维度的帧间运动信息。以下是传统2D CNN对图像采用2D卷积核进行操作的示意图: 3D CNN: 使用3D CNN能更好的捕获视频中的时间和空间的特征信息,以下是3D CNN对图像序列(视频)采用3D卷积核进行卷积操作: 上面进行卷积

2017-10-30 17:12:34 13230 2

原创 3D CNN框架结构各层详细计算过程

2D CNN和3D CNN的区别2D CNN: 利用2D CNN对视频进行操作,一般是对视频的每一帧图像分别利用CNN来进行识别,这种方式的识别不会考虑时间维度的帧间运动信息。以下是传统2D CNN对图像采用2D卷积核进行操作的示意图: 3D CNN: 使用3D CNN能更好的捕获视频中的时间和空间的特征信息,以下是3D CNN对图像序列(视频)采用3D卷积核进行卷积操作: 上面进行卷积

2017-10-30 17:12:17 4180 1

原创 shell 脚本语言学习笔记

shell 变量变量名不加 $,变量名和等号之间不能有空格。 eg: your_name="runoob.com" 首个字符必须为字母(a-z,A-Z). 中间不能有空格,可以使用下划线(_). 不能使用标点符号。 不能使用八bash的关键字。 eg: for file inls /etc` 以上语句将/etc下目录的文件名循环出来。使用变量使用一个定义过的变量只要在变量名前面加上

2017-10-28 13:23:20 686

原创 Python 批量修改文件内关键字

模板 其中文件路径,名称,修改内容按照自己需求进行相应修改#coding:utf-8import ospath="/home/user/C3D-master/C3D-v1.0/examples/c3d_finetuning"with open("/home/user/C3D-master/C3D-v1.0/examples/c3d_finetuning/train_01.lst","r") a

2017-10-27 21:45:27 2249 1

原创 Learning Spatiotemporal Features with 3D Convolutional Networks (C3D User Guide) 实验过程

1.运行 sh c3d_sport1m_feature_extraction_video.sh 出错: syncedmem.cpp:47] Check failed: error == cudaSuccess (30 vs. 0) unknown error * Check failure stack trace: * Aborted (core dumped) 解决方法:+

2017-10-27 15:14:49 797

原创 Learning Spatiotemporal Features with 3D Convolutional Networks (C3D User Guide)

1、C3D特征提取1.安装C3D(方法同安装caffe) 2.下载预训练模型将其保存在YOUR_C3D_HOME/examples/c3d_feature_extraction +将目录更改为YOUR_C3D_HOME / examples / c3d_feature_extraction +运行脚本文件: sh c3d_sport1m_feature_extraction_fr

2017-10-25 22:11:07 2197 1

原创 Going deeper with convolutions----------(GoogLeNet) 论文解读

Abstract:*作者提出了一个深度卷积神经网络结构用于ILSVRC2014,网络结构的主要特征是提升了网络内部的计算资源。十分小心地提升了网络的深度和宽度并且使计算的预期结果不变。网络结构设计基于Hebbian原则和多尺度的直觉处理。该网络被命名为GoogLenet并在分类和检测中评价其性能。1、introduction:GoogLeNet比AlexNet少12倍的参数然而准确

2017-10-22 16:38:03 509

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除