自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 收藏
  • 关注

原创 《Channel Attention Is All You Need for Video Frame Interpolation》 论文详解

CAIN 模型由两部分组成:4. 通道注意力模块:在视频帧特征提取阶段,模型通过通道注意力机制来对不同特征通道进行加权,提升关键特征的重要性,抑制无关特征;5. 插值生成模块:在特征融合阶段,模型通过已加权的特征来生成中间插值帧;通道级拼接:将输入的两个帧在通道维度上拼接,同时处理来自两个帧的信息。特征提取与处理:通过卷积和残差模块提取特征,理解图像中的运动信息和细节。上采样生成输出:将提取的特征图通过上采样恢复原始尺寸,生成插值结果。bug1:输入的3张数据分别做了不同的数据增强。

2025-04-30 10:51:29 903

原创 基于瑞芯微RV1126部署sdk流程

基于瑞芯微RV1126部署深度学习onnx量化后的rknn模型流程;

2025-04-08 14:51:01 647

原创 《MANIQA: Multi-dimension Attention Network for No-Reference Image Quality Assessment》论文详解

MANIQA 提出的核心思路:利用多维度注意力机制来增强NR-IQA的性能,使模型能更好地关注图像的局部和全局信息:MANIQA主要由以下几个部分组成:输入处理(Image Patch Embedding)特征提取(Transformer Encoder + 多维度注意力)层次特征聚合(Hierarchical Feature Aggregation)质量回归模块(Quality Regression)1.输入图像 → 划分为 Patches。

2025-04-03 15:45:22 1609

原创 【基于YOLOV5模型的tensorrt部署】

trt

2023-02-02 19:05:00 639

原创 【SVM模型训练】

SVM

2023-02-02 17:17:27 385

原创 【HRNET分割模型训练】

HRnet模型训练

2023-02-02 17:06:23 625

原创 【Yolo模块和OCR模块优化】

模块优化

2023-02-02 16:47:19 685

原创 【c++端用protobuf传递接口】

protobuf、接口

2023-02-02 16:38:17 749

原创 【分类与检测训练需要注意的点】

分类与检测训练需要注意的点

2023-02-02 16:34:11 217

原创 【pb传输数据的两种方式】

pb传输数据的两种方式

2023-02-02 16:20:40 440

原创 【RepVGG模型介绍】

RepVGG原理与训练过程

2023-02-02 16:10:38 743 1

原创 【专业的压测工具jemeter】

jemeter压测

2023-02-02 16:00:37 179

原创 【gcc编译代码过程】

gcc的编译过程

2022-10-15 21:27:38 256

原创 批量梯度下降(BGD)、随机梯度下降(SGD)以及小批量梯度下降(MBGD)的理解及 batch、epoch、iteration的含义

梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent)、随机梯度下降(Stochastic Gradient Descent)以及小批量梯度下降(Mini-Batch Gradient Descent)。其中小批量梯度下降法也常用在深度学习中进行模型的训练。接下来,我们将对这三种不同的梯度下降法进行理解。**批量梯度下降法...

2019-04-04 09:12:43 1797

原创 CGAN 论文笔记 研究热点GAN

CGAN 论文笔记 结合看到的综合总结论文地址:Conditional Generative Adversarial Nets发表于:2014年SCI2014年,Goodfellow提出了Generative Adversarial Networks,在论文的最后他指出了GAN的优缺点以及未来的研究方向和拓展,其中他提到的第一点拓展就是:A conditional generative...

2019-01-05 17:34:22 1585

rknn-toolkit2-2.2.0-cp38-cp38-manylinux-2-17-x86-64.manylinux2014-x86-64.whl

rknn_toolkit2-2.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl

2025-04-08

rknn-toolkit-1.7.6+dev240801d7f8-cp38-cp38-linux-x86-64

rknn_toolkit-1.7.6+dev240801d7f8-cp38-cp38-linux_x86_64

2025-04-08

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除