- 博客(15)
- 收藏
- 关注
原创 《Channel Attention Is All You Need for Video Frame Interpolation》 论文详解
CAIN 模型由两部分组成:4. 通道注意力模块:在视频帧特征提取阶段,模型通过通道注意力机制来对不同特征通道进行加权,提升关键特征的重要性,抑制无关特征;5. 插值生成模块:在特征融合阶段,模型通过已加权的特征来生成中间插值帧;通道级拼接:将输入的两个帧在通道维度上拼接,同时处理来自两个帧的信息。特征提取与处理:通过卷积和残差模块提取特征,理解图像中的运动信息和细节。上采样生成输出:将提取的特征图通过上采样恢复原始尺寸,生成插值结果。bug1:输入的3张数据分别做了不同的数据增强。
2025-04-30 10:51:29
903
原创 《MANIQA: Multi-dimension Attention Network for No-Reference Image Quality Assessment》论文详解
MANIQA 提出的核心思路:利用多维度注意力机制来增强NR-IQA的性能,使模型能更好地关注图像的局部和全局信息:MANIQA主要由以下几个部分组成:输入处理(Image Patch Embedding)特征提取(Transformer Encoder + 多维度注意力)层次特征聚合(Hierarchical Feature Aggregation)质量回归模块(Quality Regression)1.输入图像 → 划分为 Patches。
2025-04-03 15:45:22
1609
原创 批量梯度下降(BGD)、随机梯度下降(SGD)以及小批量梯度下降(MBGD)的理解及 batch、epoch、iteration的含义
梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent)、随机梯度下降(Stochastic Gradient Descent)以及小批量梯度下降(Mini-Batch Gradient Descent)。其中小批量梯度下降法也常用在深度学习中进行模型的训练。接下来,我们将对这三种不同的梯度下降法进行理解。**批量梯度下降法...
2019-04-04 09:12:43
1797
原创 CGAN 论文笔记 研究热点GAN
CGAN 论文笔记 结合看到的综合总结论文地址:Conditional Generative Adversarial Nets发表于:2014年SCI2014年,Goodfellow提出了Generative Adversarial Networks,在论文的最后他指出了GAN的优缺点以及未来的研究方向和拓展,其中他提到的第一点拓展就是:A conditional generative...
2019-01-05 17:34:22
1585
rknn-toolkit2-2.2.0-cp38-cp38-manylinux-2-17-x86-64.manylinux2014-x86-64.whl
2025-04-08
rknn-toolkit-1.7.6+dev240801d7f8-cp38-cp38-linux-x86-64
2025-04-08
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人