在自动驾驶领域,针对汽车压线情况的数据集并不直接以“汽车压线”为命名或主要标签,但车道线检测数据集和自动驾驶场景数据集通常包含与压线相关的图像和标注信息。以下是一些可能包含汽车压线情况的数据集:
- TuSimple:这是一个专注于高速公路车道检测的数据集,包含了约7000个1秒长的视频剪辑,每个视频剪辑包含20帧图像。该数据集在良好和中等天气条件下,以及不同的交通条件和车道数量(2车道、3车道、4车道或更多)下进行了采集。因此,它很可能包含汽车压线的场景,特别是当车辆跨越车道线时。
- CULane:这是一个具有挑战性的大规模车道检测数据集,由安装在北京不同司机驾驶的六辆不同车辆上的摄像机采集。该数据集包含了55个多小时的视频,提取了133235帧图像,并分为训练集、验证集和测试集。它特别关注四条车道标线的检测,并且对于车道标线被遮挡或不可见的情况,仍然根据上下文进行了注释。因此,CULane数据集也可能包含汽车压线的场景。
- KITTI:这是一个国际上知名的自动驾驶场景下的计算机视觉算法评测数据集。它包含了市区、乡村和高速公路等场景采集的真实图像数据,以及对应的点云和IMU数据。虽然KITTI数据集没有直接针对车道线检测进行标注,但其中的图像数据很可能包含汽车压线的场景,特别是在市区和高速公路场景中。