
常见经济模型以及示例
文章平均质量分 61
大霸王龙
952934650
系统分析指导,数据仿真。
展开
-
经济模型智慧管理分析系统(EcoModel Manager)
产品介绍方案产品名称经济模型智慧管理分析系统(EcoModel Manager)主要功能多维度经济模型构建智能数据分析与预测动态情景模拟与优化可视化报告与决策支持功能介绍多维度经济模型构建具体作用:EcoModel Manager允许用户根据行业类别(如金融、制造业、服务业等)、子类别(如金融科技、智能制造、零售服务等)及细分类别(如风险管理、供应链优化、消费者行为分析等)快速搭建定制化经济模型。使用方式。原创 2024-11-07 11:08:40 · 1227 阅读 · 0 评论 -
Floyd-Warshall算法是一种经典的动态规划算法
Floyd-Warshall算法是一种经典的动态规划算法,用于找出加权图中所有顶点对之间的最短路径。该算法可以处理带有负权边的图,但不能处理带有负权环的图,因为负权环会导致最短路径不收敛。下面我将对Floyd-Warshall算法进行详细解释,并提供一个Python代码示例。原创 2024-07-21 11:20:44 · 356 阅读 · 0 评论 -
ADAMS/Solver详解及Python代码示例(非直接代码,但提供概念性解释)
此外,对于与ADAMS/Solver的直接交互(如创建模型、添加约束和力等),通常需要使用ADAMS软件提供的图形用户界面或命令行接口来完成。ADAMS/Solver作为ADAMS软件的核心模块,被誉为该软件的“发动机”。在机械系统仿真分析中,ADAMS/Solver发挥着至关重要的作用,使得工程师能够准确预测机械系统的性能、运动范围、碰撞检测等关键信息。ADAMS/Solver采用多刚体系统动力学理论中的拉格朗日方程方法,通过交互式图形环境和零件库、约束库、力库等,创建完全参数化的机械系统几何模型。原创 2024-07-18 11:08:12 · 866 阅读 · 0 评论 -
Cross-Docking模型详解与Python代码示例
Cross-Docking(越库)是一种在物流和供应链管理中的策略,它旨在减少库存和运输成本,同时提高物流效率。在Cross-Docking模型中,货物从收货区直接流向发货区,中间省略了传统的存储和拣选过程。以下是一个简单的Python代码示例,用于模拟Cross-Docking过程中的货物转运。我们的目标是模拟这些货物如何从收货区直接转运到发货区。然而,Cross-Docking模型也面临一些挑战,如需要高效的物流信息系统来支持实时订单处理和货物追踪,以及需要足够的运输车队来确保货物的及时转运。原创 2024-07-17 18:19:27 · 501 阅读 · 0 评论 -
Cournot竞争模型详解与Python代码示例
该模型是经济学中研究寡头市场结构下厂商产量决策的经典模型。在Cournot模型中,假设市场上只有两个生产相同产品的厂商,它们通过调整各自的产量来最大化自己的利润,同时受到对方产量的影响。设企业1的产量为q1,企业2的产量为q2,共同面临的市场逆需求函数为P = a - b(q1 + q2),其中a和b为常数,且b > 0。企业i(i=1,2)的成本函数为Ci(qi) = ci * qi,其中ci为企业i的边际成本。为了最大化利润,每个厂商都会根据对方的产量来选择自己的最优产量。原创 2024-07-17 18:18:33 · 740 阅读 · 2 评论 -
Copula模型是一种用于描述多个随机变量之间依赖结构的统计工具。
Copula模型是一种用于描述多个随机变量之间依赖结构的统计工具。在金融风险管理、气候模型、保险定价等领域,Copula模型因其能够捕捉变量间非线性、非对称的依赖关系而备受青睐。下面,我将对Copula模型进行详细解释,并给出一个基于Python的Gaussian Copula模型的代码示例。原创 2024-07-17 18:17:50 · 1366 阅读 · 0 评论 -
Conjoint Analysis(联合分析法)解释与Python代码示例
该方法通过模拟消费者在购买决策过程中对不同产品属性的权衡和比较,来评估各属性在消费者心中的相对重要性和不同属性水平的效用值。在联合分析中,产品被描述为一系列属性的组合(即“轮廓”),每个属性有多个不同的水平。消费者根据自己对不同属性水平的偏好,对一系列产品轮廓进行评价。通过对这些评价数据的分析,可以计算出各属性的重要性权重和属性水平的效用值,从而了解消费者的选择偏好。以下是一个简单的联合分析Python代码示例,用于模拟消费者对不同手机属性的偏好评价,并计算各属性的重要性权重和属性水平的效用值。原创 2024-07-17 18:11:50 · 851 阅读 · 0 评论 -
Compromise Programming(妥协规划法)解释与Python代码示例
通过调整权重w1和w2的值,我们可以改变f1和f2在目标函数中的相对重要性,从而实现妥协规划。在实际应用中,我们经常会遇到多个目标相互冲突或相互制约的情况,此时就需要采用妥协规划法来找到一个或多个解,使得这些目标或约束条件在某种程度上达到最优。在妥协规划法中,我们通常会将每个目标或约束条件转化为一个或多个数学表达式,并赋予它们相应的权重。然后,通过调整这些权重和数学表达式的形式,我们可以得到一个或多个解,这些解在整体上能够较好地满足所有目标或约束条件。下面是一个使用Python实现妥协规划法的简单示例。原创 2024-07-17 18:07:39 · 480 阅读 · 0 评论 -
Cobb-Douglas生产函数详解与Python代码示例
在经济学中,Cobb-Douglas生产函数是一种广泛使用的模型,用于描述一个经济系统中生产活动的基本特征。该函数由美国经济学家Charles Cobb和Paul Douglas于1928年提出,旨在研究资本和劳动力投入对产出的影响。下面,我将对Cobb-Douglas生产函数进行详细解释,并提供一个Python代码示例。的函数,用于计算Cobb-Douglas生产函数的值。在函数内部,我们首先检查参数的有效性,确保它们满足Cobb-Douglas生产函数的要求。函数计算产出的值,并返回结果。原创 2024-07-17 18:06:50 · 1502 阅读 · 0 评论 -
聚类分析详解与Python代码示例
聚类分析,作为数据挖掘和机器学习领域的重要技术之一,旨在将一组数据对象(或观测值)按照它们之间的相似性或距离进行分组,形成多个不同的簇或类别。通过上面的代码示例,我们可以看到K-means聚类算法在Python中的实现过程,并可以直观地观察到聚类结果。在实际应用中,我们可以根据具体的数据集和需求,选择合适的聚类算法和参数设置,以得到更好的聚类效果。K-means算法是一种基于距离的聚类算法,它试图将数据点划分为K个簇,使得每个数据点与其所属簇的质心(即簇中所有点的平均值)之间的平方距离之和最小。原创 2024-07-17 18:01:21 · 394 阅读 · 0 评论 -
聚类分析详解与Python代码示例
聚类分析,作为数据挖掘和机器学习领域的重要技术之一,旨在将一组数据对象(或观测值)按照它们之间的相似性或距离进行分组,形成多个不同的簇或类别。通过上面的代码示例,我们可以看到K-means聚类算法在Python中的实现过程,并可以直观地观察到聚类结果。在实际应用中,我们可以根据具体的数据集和需求,选择合适的聚类算法和参数设置,以得到更好的聚类效果。K-means算法是一种基于距离的聚类算法,它试图将数据点划分为K个簇,使得每个数据点与其所属簇的质心(即簇中所有点的平均值)之间的平方距离之和最小。原创 2024-07-17 17:58:51 · 585 阅读 · 0 评论 -
Closed-loop Supply Chain模型详解与Python代码示例
闭环供应链(Closed-Loop Supply Chain, CLSC)是一种新型的供应链管理策略,它涵盖了从原材料采购、产品制造、分销、消费到产品回收、再利用或处置的整个生命周期。在这个体系中,产品经过使用后被回收,经过检测、分类、再处理等环节,重新进入生产环节或作为再生资源被利用,从而实现了资源的循环利用和环境的可持续发展。根据模拟结果,可以了解产品的生产、销售和回收情况,以及回收率对产品回收数量的影响。以下是一个简化的闭环供应链模型Python代码示例,用于模拟产品的生产、销售和回收过程。原创 2024-07-17 17:58:04 · 498 阅读 · 0 评论 -
Closed-loop Supply Chain模型详解与Python代码示例
闭环供应链(Closed-Loop Supply Chain, CLSC)是一种新型的供应链管理策略,它涵盖了从原材料采购、产品制造、分销、消费到产品回收、再利用或处置的整个生命周期。在这个体系中,产品经过使用后被回收,经过检测、分类、再处理等环节,重新进入生产环节或作为再生资源被利用,从而实现了资源的循环利用和环境的可持续发展。根据模拟结果,可以了解产品的生产、销售和回收情况,以及回收率对产品回收数量的影响。以下是一个简化的闭环供应链模型Python代码示例,用于模拟产品的生产、销售和回收过程。原创 2024-07-17 17:57:31 · 568 阅读 · 0 评论 -
Clarke-Wright节约算法详解与Python代码示例
Clarke-Wright节约算法(简称C-W算法),也称为节约里程法或节约算法,是由Clarke和Wright于1964年提出的一种启发式算法。C-W算法的核心思想是通过计算并比较不同城市对之间的“节约量”(Saving),即合并两个城市到同一辆车的行驶路线所能节省的距离,来逐步构建最优的车辆行驶路线。算法首先计算所有城市对之间的节约量,并按节约量大小进行排序,然后按照节约量从大到小的顺序,依次检查并合并城市对,直到满足所有约束条件(如车辆容量限制、时间窗限制等)为止。原创 2024-07-17 17:55:57 · 1593 阅读 · 0 评论 -
中心极限定理的详细解释与Python代码示例
中心极限定理是概率论和数理统计学中的一个重要定理,它揭示了大量独立同分布的随机变量之和的极限分布为正态分布的现象。简单来说,当我们从某个总体中随机抽取大量的样本,并计算这些样本的平均值时,这些平均值的分布会趋向于正态分布,无论原始总体的分布形态如何。在实际应用中,由于总体数据往往难以全部获取,我们通常会通过抽取样本并计算其均值来估计总体的均值。在这个示例中,我们将从一个非正态分布的总体中抽取大量样本,并计算这些样本的均值,然后观察这些均值的分布是否趋向于正态分布。原创 2024-07-17 17:52:22 · 240 阅读 · 0 评论 -
CAVE模型
CAVE模型的应用范围广泛,包括但不限于虚拟设计、虚拟装配、虚拟展示、虚拟训练等领域。该系统通过融合高分辨率的立体投影显示技术、多通道视景同步技术、视角动态跟踪及捕捉技术、音响技术、传感器技术等,为用户创造出一个完全沉浸式的三维虚拟环境。这个简单的Python代码示例虽然无法完全模拟CAVE模型的复杂性和沉浸感,但能够展示用户与虚拟环境进行交互的基本过程。该示例中,我们假设用户正在一个虚拟的洞穴环境中探险,用户可以通过输入指令来与虚拟环境进行交互。原创 2024-07-16 08:07:07 · 1180 阅读 · 0 评论 -
Capacitated Vehicle Routing Problem(CVRP)是一个在物流管理和运筹学中广泛研究的问题
在CVRP中,我们假设有一个中心仓库(或称为配送中心),以及多个需要配送货物的客户点。每个客户点都有一定数量的货物需求,而车队中的每辆车都有一定的载重能力。我们的目标是设计一条或多条从仓库出发,经过所有客户点并返回仓库的路径,使得在满足所有约束条件的前提下,总运输成本最低。它涉及到如何为一组已知需求的客户设计从中心仓库出发并返回的最小费用路径,同时需要满足一系列约束条件,如每个客户只能被服务一次,车辆的载重能力有限等。以下是一个使用Google的OR-Tools库解决CVRP问题的Python代码示例。原创 2024-07-16 08:06:37 · 580 阅读 · 0 评论 -
牛鞭效应(Bullwhip Effect)
这段代码通过设定初始需求和放大系数,模拟了供应链中牛鞭效应的产生过程。通过输出结果,我们可以清晰地看到需求信息在供应链中的放大情况。当然,这只是一个简单的示例,实际的供应链结构可能更加复杂,但牛鞭效应的基本原理是相似的。牛鞭效应,又称需求放大效应,是供应链管理中一个常见的现象。它描述的是供应链中需求信息从最终客户向原始供应商传递时,由于信息传递的失真和延迟,导致需求信息逐级放大的现象。牛鞭效应对供应链的影响是显著的。同时,由于需求信息的失真,制造商难以做出科学的生产决策,导致生产计划的混乱和资源的浪费。原创 2024-07-16 08:06:07 · 1145 阅读 · 0 评论 -
Brown模型,在概率论中,通常指的是布朗运动(Brownian Motion)的数学模型。
Brown模型,在概率论中,通常指的是布朗运动(Brownian Motion)的数学模型。布朗运动是一种随机过程,它描述了微小粒子在液体或气体中由于与周围分子的随机碰撞而产生的无规则运动。以下是一个简单的Python代码示例,用于模拟一维标准布朗运动的轨迹。这里我们使用NumPy库来生成正态分布的随机数,并使用Matplotlib库来绘制轨迹图。通过运行这段代码,我们可以得到一个一维标准布朗运动的模拟轨迹图,从而直观地理解布朗运动的特性。类似地,d-维布朗运动是满足类似条件的d维随机过程。原创 2024-07-16 08:05:31 · 799 阅读 · 0 评论 -
分支定界法(Branch and Bound, 简称B&B)是一种求解整数规划问题的有效算法。
分支定界法(Branch and Bound, 简称B&B)是一种求解整数规划问题的有效算法。它结合了搜索与迭代的思想,通过系统地枚举候选解来寻找最优解。在求解过程中,算法将问题的可行解空间视为一个树形结构,其中根节点代表整个解空间,而树的分支则代表解空间的子集。算法通过不断地探索这些分支,并利用上界和下界的信息来剪枝,从而缩小搜索空间,提高求解效率。原创 2024-07-16 08:04:59 · 1648 阅读 · 0 评论 -
Black-Scholes模型,简称BS模型,是由经济学家费雪·布莱克(Fischer Black)和迈伦·舒尔斯(Myron Scholes)于1973年共同提出的一种为期权等金融衍生工具定价的数学
Black-Scholes模型,简称BS模型,是由经济学家费雪·布莱克(Fischer Black)和迈伦·舒尔斯(Myron Scholes)于1973年共同提出的一种为期权等金融衍生工具定价的数学模型。尽管模型在现实中存在一些局限性,如假设市场无摩擦、资产价格服从对数正态分布等,但其在金融领域的应用仍然十分广泛,对期权市场的繁荣起到了重要的推动作用。函数接受标的资产当前价格、期权行权价格、到期时间、无风险利率和资产价格波动率作为输入参数,并返回计算得到的期权价格。函数计算了看涨期权的价格。原创 2024-07-16 08:04:23 · 1608 阅读 · 0 评论 -
Bin Packing问题,又称装箱问题,是一个经典的组合优化问题。
Bin Packing问题,又称装箱问题,是一个经典的组合优化问题。在这个问题中,我们有一组不同大小的物品(通常称为“项目”)和一组固定容量的容器(通常称为“箱子”)。目标是将这些项目尽可能高效地放入箱子中,以最小化使用的箱子数量或最大化每个箱子的空间利用率。在实际应用中,我们需要根据具体问题补充选择、交叉、变异等核心操作,并调整参数以获得更好的性能。为了简化问题,我们假设项目和箱子都是一维的,即只有长度属性。Bin Packing问题是一个NP-hard问题,意味着在多项式时间内找到最优解是非常困难的。原创 2024-07-16 08:03:39 · 1220 阅读 · 0 评论 -
Best-Fit算法在内存管理中起着重要作用
Best-Fit算法是一种内存分配策略,主要用于在多个可用内存块中,找到大小最接近且能满足请求大小的内存块进行分配。这种算法有助于减少内存碎片,提高内存利用率。下面我将对Best-Fit算法进行详细解释,并给出一个Python代码示例。原创 2024-07-16 08:03:07 · 466 阅读 · 0 评论 -
Bertrand竞争模型,也称为Bertrand模型或Bertrand寡头模型,是由法国经济学家Joseph Louis François Bertrand在19世纪提出的。
Bertrand竞争模型,也称为Bertrand模型或Bertrand寡头模型,是由法国经济学家Joseph Louis François Bertrand在19世纪提出的。与古诺模型(Cournot Model)不同,Bertrand模型中的厂商不是通过调整产量来竞争,而是通过调整价格来竞争。因此,在实际应用中,Bertrand模型通常作为理论分析工具来使用,而不是直接用于预测市场行为。在Bertrand模型中,由于产品是完全相同的,消费者只会选择价格最低的厂商进行购买。原创 2024-07-16 08:02:31 · 1198 阅读 · 0 评论 -
贝尔曼-福特算法是一种用于求解带权图中单源最短路径问题的算法。
具体来说,对于图中的每一条边,如果从一个节点到另一个节点的直接路径比当前已知的最短路径更短,那么就更新这个最短路径。贝尔曼-福特算法是一种用于求解带权图中单源最短路径问题的算法。与迪杰斯特拉(Dijkstra)算法不同,贝尔曼-福特算法可以处理包含负权边的图,并且能够检测图中是否存在负权环(即权值之和小于0的环路)。方法来计算从源节点(节点0)到各个节点的最短距离,并打印结果。如果图中存在负权环,算法会输出相应的提示信息。,并实现了添加边和贝尔曼-福特算法的方法。,并添加了一些边和对应的权值。原创 2024-07-16 08:01:55 · 359 阅读 · 0 评论 -
盈亏平衡点(Break-Even Point, BEP)是企业在运营过程中一个重要的财务指标,它指的是企业销售收入与成本支出相等,即利润为零的临界点。
在实际应用中,企业可以根据自身的经营情况和市场环境,调整相关参数,从而得出更为准确的盈亏平衡点。同时,企业还可以根据盈亏平衡点的计算结果,制定出更为合理的经营策略,以提高经营效率和市场竞争力。盈亏平衡点(Break-Even Point, BEP)是企业在运营过程中一个重要的财务指标,它指的是企业销售收入与成本支出相等,即利润为零的临界点。在计算盈亏平衡点时,需要考虑企业的固定成本和变动成本。假设我们已知企业的固定成本、单位产品的销售价格、单位产品的变动成本以及单位产品的增值税及附加税率。原创 2024-07-16 08:01:24 · 1071 阅读 · 0 评论 -
贝叶斯网络(Bayesian Network),又称信度网络或是有向无环图模型(Directed Acyclic Graphical Model),是一种基于概率推理的图形化网络,用于表示变量之间的依
贝叶斯网络(Bayesian Network),又称信度网络或是有向无环图模型(Directed Acyclic Graphical Model),是一种基于概率推理的图形化网络,用于表示变量之间的依赖关系和概率分布。它起源于托马斯·贝叶斯(Thomas Bayes)的贝叶斯定理,由Judea Pearl在1988年提出,并逐渐成为处理不确定性和复杂依赖关系问题的有效工具。原创 2024-07-16 08:00:47 · 1038 阅读 · 0 评论 -
Baum-Welch算法,也被称为前向-后向算法,是一种用于训练隐马尔可夫模型(Hidden Markov Model, HMM)的重要算法。
Baum-Welch算法,也被称为前向-后向算法,是一种用于训练隐马尔可夫模型(Hidden Markov Model, HMM)的重要算法。HMM是一种统计模型,用于描述一个含有隐含未知参数的马尔可夫过程。Baum-Welch算法的核心思想是通过迭代的方式,根据观测序列来调整HMM的模型参数,使得模型能够更好地拟合观测数据。方法训练模型,该方法内部使用了Baum-Welch算法。最后,我们打印了训练后的模型参数。库来演示如何使用Python实现基于Baum-Welch算法的HMM训练。原创 2024-07-16 08:00:08 · 790 阅读 · 0 评论 -
Barabási–Albert模型详解与Python代码示例
Barabási–Albert(BA)模型是一种用于模拟和分析复杂网络结构的数学模型,特别适用于描述那些具有“无标度”特性的网络。无标度网络是指网络中节点的连接度(度)分布遵循幂律分布,即少数节点拥有大量的连接,而大多数节点只有少量的连接。这种特性在许多现实世界的网络中都得到了体现,如社交网络、互联网、生物网络等。BA模型基于两个核心机制:增长和优先连接。增长意味着网络中的节点数量会随着时间的推移而增加;优先连接则是指新加入的节点更倾向于与那些已经拥有较多连接的节点建立连接,即“富者愈富”的原则。原创 2024-07-15 22:12:40 · 1197 阅读 · 0 评论 -
ARIMA模型(AutoRegressive Integrated Moving Average Model)
ARIMA模型(AutoRegressive Integrated Moving Average Model)是一种广泛应用于时间序列数据分析和预测的统计模型。该模型结合了自回归(AR)、差分(I)和移动平均(MA)三个主要组件,用于捕捉时间序列数据中的复杂模式和结构。下面我将对ARIMA模型进行详细解释,并提供一个Python代码示例。原创 2024-07-15 22:12:00 · 785 阅读 · 0 评论 -
ABC分析模型详解
欢迎来到 PyDemo,这是一个专为 Python 学习者设计的代码示例合集。无论你是编程新手还是经验丰富的开发者,PyDemo 都将为你提供有用的代码片段,帮助你快速掌握 Python 编程的各种技巧和应用场景。# 函数定义# 函数定义 def greet(name) : return f"Hello, {name }!" # 函数调用 print(greet("Alice"))!原创 2024-07-15 22:11:23 · 1298 阅读 · 0 评论