本地可执行命令的智能体部署方案

本地可执行命令的智能体部署方案,目标是让大语言模型(LLM)在本地接收自然语言指令,并自动调用系统命令、脚本或应用程序,完成任务自动化。这类系统通常被称为 LLM Agent with Tool Use本地 Agent 实体系统


🧠 一、系统整体架构(LLM+Agent+Command执行)

       ┌────────────┐
       │ 自然语言输入 │
       └────┬───────┘
            ▼
       ┌────────────┐
       │  LLM Agent │  ← 支持 Tool 使用
       └────┬───────┘
            ▼
       ┌──────────────┐
       │ 指令解析与规划 │
       └────┬─────────┘
            ▼
   ┌────────────────────┐
   │ 系统命令执行 (bash, python, etc.) │
   └────────────────────┘
            ▼
       ┌────────────┐
       │ 执行结果反馈 │
       └────────────┘

🚀 二、部署方案选型

类型模型支持工具管理优点缺点
LangChain + ChatGLM/Qwen + Tool生态成熟,可组合配置复杂
AutoGPT / OpenAgents 本地版任务自动规划占资源多
Custom Agent(FastAPI + Shell)自定义手动定义工具控制强、轻量需自建功能

推荐方案:LangChain + LLM + 本地工具调用 + FastAPI 接口包装


⚙️ 三、核心实现步骤(LangChain 本地智能体)

1. 环境准备

conda create -n agent python=3.10 -y
conda activate agent
pip install langchain openai transformers auto-gptq faiss-cpu
pip install duckduckgo-search # optional web tool

2. 加载本地模型(Qwen/ChatGLM)

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-1_8B-Chat", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-1_8B-Chat", trust_remote_code=True).half().cuda()

封装成 llm = HuggingFacePipeline(...),用于 langchain。


3. 定义可调用工具(如 shell 执行器)

from langchain.tools import Tool
import subprocess

def execute_shell(command: str) -> str:
    try:
        return subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT, timeout=10).decode("utf-8")
    except subprocess.CalledProcessError as e:
        return f"[Error]: {e.output.decode('utf-8')}"

shell_tool = Tool(name="shell", func=execute_shell, description="Execute shell command on local system")

4. 构建 Agent

from langchain.agents import initialize_agent, AgentType
from langchain.agents.agent_toolkits import Tool

tools = [shell_tool]  # 你也可以加入 python 执行器、浏览器搜索器等

agent = initialize_agent(
    tools=tools,
    llm=llm,
    agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
    verbose=True
)

# 测试
response = agent.run("列出当前目录下的所有文件,并显示文件大小")
print(response)

5. FastAPI 封装成服务(可被Web调用)

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()

class Request(BaseModel):
    query: str

@app.post("/agent")
def run_agent(req: Request):
    result = agent.run(req.query)
    return {"result": result}

运行:

uvicorn agent_api:app --host 0.0.0.0 --port 8080

🔐 安全建议

项目建议
命令白名单限制 LLM 只能调用指定命令(避免 rm -rf)
沙盒执行使用 dockerchroot 隔离指令
日志审计记录调用历史
用户认证增加 JWT 或 API Token

📦 推荐工具扩展

  • Python Executor Tool:解释 Python 代码(如计算器、数据分析)
  • 文件系统工具:读写指定目录下的文本、Excel、PDF
  • 网络爬虫 Tool:执行 requests/get 接口(需加认证)
  • 插件系统:仿 OpenAI Function Call 的格式

✅ 示例自然语言任务

- 帮我统计当前目录下的 Python 文件数量
- 运行一个 Python 脚本,并返回输出
- 用 curl 请求一个 API 并展示返回内容
- 列出系统进程中占用内存最多的前5个

如果你需要我生成一个**完整部署项目(含工具定义、模型加载、API服务)**的代码压缩包,我可以立即打包给你。你希望使用哪种模型(如 Qwen-1.8B、ChatGLM2、Baichuan2)?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大霸王龙

+V来点难题

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值