这问题似乎是在问,floor(3.x) = ?显然结果是3.
但这个解答显然是误读了问题。
考虑这个问题:0.999... 9上有个点,也就是后面都是9,这个数等于几?
这个大家都知道,它就等于1,也就是9乘以9分之1。
准确的说,就是10进制的1。
现在考虑
3.3333...=3+0.3333....=3+(1/3)
对于4进制来说,0.3333...=1,而3还是一样的。
这就得到3+0.3333....= 3+(1/3)=3+1=4
这个数就是10进制的4或者4进制的10
而这个数是怎么写出来的呢?它其实就是按照
x+1/x
的形式写出来的,它就是虚数单位
x+1/x=0
在特定进制下的解,x就是那个进制的n-1
也就是说,那个进制可以写出的最大值。
比如4进制的3,就是4进制可以写出的不进位的最大值,正如10进制的9.
而它的倒数,就是那个进制的1。
所以如果我们写出1/1+1/2+1/3+...
我们就是在写 2进制的1+3进制的1+4进制的1....(没有1进制,1进制的1就只能写成0)
都是1,一直加下去,无穷无尽,结果当然就是无穷大了。
所以回到最初的问题,3和4之间有一个整数,它是多少?
它就是3+1=3+1/3=4
不写4,而是写3+1/3,也是一样的。
而0.333...在10进制上终究比1小,所以说,
3.3333....就是那个3和4 之间的整数。
而这里的3和1/3也就是4进制的虚数单位以及它的倒数。