所谓楼梯悖论,如图所示,
要在一段长度为4,高度为3的斜坡(蓝色三角形)上建造楼梯(橘色折线)。直观上很容易知道,楼梯作为一条折线,其总长总是等于斜坡长度和高度的总和,也就是
无论这个楼梯的折线折成多少段,每一段的长度和高度是多少,总之水平方向上的长度之和总是等于4,竖直方向上的长度之和,总是等于3。现在,让我们考虑极限的情况,也就是说,其折段的次数无限增加,那么最终,这个楼梯就会显得像是斜坡本身,而我们知道,根据勾股定理,这时候斜坡的斜边长度为,
明明是一条长度无论如何都是7的折线,为什么对其无限折段之后,长度会变成5呢?7怎么能等于5呢?而这个问题就是所谓的楼梯悖论。
让我们看看楼梯悖论到底要说明的是什么。
我们知道,世上并没有维数,而只有复数。也就是说,一个数量被观察者观察,观察者的周期性导致了数量体现出特定单位的重复以及余量。而重复和余量二者就构成了相继两个维数上的坐标。比如数量17被观察能力数量为5的观察者观察,则可以得到
也就是说,数量17被数量5观察,就可以为其建立一个复平面(不严格的说,平面直角坐标系)。其中,若令x(实轴)方向上的一个单位为1,同时y(虚轴)方向上的一个单位相当于x方向上一个单位的5倍(当然这个长度也是y方向上的单位1),那么我们就可以在这个平面上找到一个点,它的坐标为,或者说它也可以被认为是一个从原点指向
方向上的向量。这里隐含了y方向单位长度为x方向单位长度的5倍这样一个事实。其实,如果我们颠倒x和y两个方向,或者说让x方向的单位长度为y方向单位长度的5倍,情况也是一样的,至多我们要把这个坐标写成
。事实上我们总是很难分清到底谁是谁的5倍。但是我们知道,