青蛙的约会
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 86204 | Accepted: 15142 |
Description
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input
输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。
Output
输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"
Sample Input
1 2 3 4 5
Sample Output
4
Source
本题主要是扩展欧几里得定理的应用。由题意我们知道两只青蛙相遇的条件为 (x+sm)-(y+sn)=kL 其中k ,s为整数。我们可以转换为s(m-n)+kl =y-x 的形式,即ax+by=c由扩展欧几里得定理我们知道当 c可以整除gcd(a,b)时,x,y才有整数解。所以可以先判断c%gcd(a,b)的情况,在有解的情况下,我们可以两边先除以gcd(a,b),得到如下形式ax+by=n',利用扩展欧几里得定理求得ax+by=1时候的一个特解,x0,y0,所以最终x的解为x=n‘x0 - bt,t为整数。为了保证x大于0,我们可以令x等于0,利用程序的整数先求出t的值,实际上x可能取不到0,所以根据x此时是否为非负值的情况判断是否加上b的值,如果是负值,则加上b的值,否则x就是题目要求的值。
#include <cstdio>
int gcd(int a, int b)
{
if(b == 0)
return a;
else
return gcd(b, a % b);
}
void eulid(__int64 a, __int64 b, __int64 &x, __int64 &y)
{
if(b == 0)
{
x = 1;
y = 0;
}
else
{
eulid(b, a % b, x, y);
int t = x;
x = y;
y = t - a / b * y;
}
}
int main()
{
__int64 x, y, m, n, l;
scanf("%I64d %I64d %I64d %I64d %I64d", &x, &y, &m, &n, &l);
__int64 a, b, c, r;
a = m - n;
b = l;
c = y - x;
if(a < 0)
{
a = -a;
c = -c;
}
r = gcd(a, b);
if(c % r || m == n)
{
printf("Impossible\n");
}
else
{
a /= r;
b /= r;
c /= r;
eulid(a, b, x, y);
__int64 t = c * x / b;
x = c * x - b * t;
if(x < 0)
x = x + b;
printf("%I64d\n", x);
}
return 0;
}