为什么性能指标
用于评价模型的好坏,当然使用不同的性能指标对模型进行评价往往会有不同的结果,也就是说模型的好坏是“相对”的,什么样的模型好的,不仅取决于算法和数据,还决定于任务需求。因此,选取一个合理的模型评价指标是非常有必要的。
错误率 & 精度
针对数据集 D D D和学习器 f f f而言:
1、错误率:分类错误的样本数占总样本的比例
E ( f ; D ) = 1 m ∑ i = 1 m I ( f ( x i ) ≠ y i ) E(f;D)=\frac 1m \sum_{i=1}^mI(f(x_i) \neq y_i) E(f;D)=m1i=1∑mI(f(xi)=yi)
2、精度:分类正确的样本数占总样本的比例
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ acc(f;D) & =\f…
召回率 & 准确率
为什么引入
精度和错误率虽然常用,但还是不能满足所有的需求。举个例子:
信息检索中,我们经常会关系“检索出的信息有多少比例是用户感兴趣的”以及“用户感兴趣的信息中有多少被检索出来了”,用精度和错误率就描述出来了,这就需要引入准确率(precision,亦称查准)和召回率(recall,亦称查全)。