性能指标(模型评估)之mAP

为什么性能指标

用于评价模型的好坏,当然使用不同的性能指标对模型进行评价往往会有不同的结果,也就是说模型的好坏是“相对”的,什么样的模型好的,不仅取决于算法和数据,还决定于任务需求。因此,选取一个合理的模型评价指标是非常有必要的。

错误率 & 精度

针对数据集 D D D和学习器 f f f而言:

1、错误率:分类错误的样本数占总样本的比例
E ( f ; D ) = 1 m ∑ i = 1 m I ( f ( x i ) ≠ y i ) E(f;D)=\frac 1m \sum_{i=1}^mI(f(x_i) \neq y_i) E(f;D)=m1i=1mI(f(xi)=yi)
2、精度:分类正确的样本数占总样本的比例
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ acc(f;D) & =\f…

召回率 & 准确率

为什么引入

精度和错误率虽然常用,但还是不能满足所有的需求。举个例子:

信息检索中,我们经常会关系检索出的信息有多少比例是用户感兴趣的以及用户感兴趣的信息中有多少被检索出来了,用精度和错误率就描述出来了,这就需要引入准确率(precision,亦称查准)和召回率(recall,亦称查全)。

表1 测试样本分类说明(分4类) | 真实情况 | 预测为正 | 预测为反 | 召回率 | |:-:|:-:|:-:|:-:| | 正 | TP(真正) | FN(假反) | $R
评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值