题目大意是说,有1 2 5三种硬币,各有x[0] x[1] x[2]个。
问这些钱不能凑出来的最小数值是多少。
比如1 1 3,指的是1元有1个,2元有一个,5元有3个,用它能凑出1元2元3元(1元+2元),却凑不出4元,所以输出4。
这个例子用母函数解就是(1 + x)(1 + x^2)(1 + x^5 + x^10 + x^15)
其实,只要判断用这三种钱能不能凑出1~10的所有数就行了,如果不能,就输出不能的那个数,如果能,就输出钱的总和+1。
#include<iostream>
using namespace std;
int c1[15], c2[15];
int x[3];
int elem[3] = {1, 2, 5};
int main()
{
while(~scanf("%d%d%d", &x[0], &x[1], &x[2]) && (x[0]||x[1]||x[2]) )
{
int n = 10;
memset(c1, 0, sizeof(c1));
memset(c2, 0, sizeof(c2));
int t = x[0] >= 10 ? 10 : x[0];
for(int i = 0; i <= t; i++)
c1[i] = 1;
for(int i = 1; i <= 2; i++)
{
for(int j = 0; j <= n; j++)
for(int k = 0; k+j <= 10 && k <= x[i]*elem[i]; k += elem[i])
c2[k+j] += c1[j];
for(int i = 0; i <= 10; i++)
{
c1[i] = c2[i];
c2[i] = 0;
}
}
int ans = 0;
for(int i = 1; i <= 10; i++)
{
if(!c1[i])
{
ans = i;
break;
}
}
if(ans)
printf("%d\n", ans);
else
printf("%d\n", x[0] + x[1]*2 + x[2]*5 + 1);
}
return 0;
}