A - Mr. Kitayuta's Gift:插入一个字符判断能否组成回文串
<pre name="code" class="cpp">#include<iostream>
#include<stdio.h>
#include<string>
using namespace std;
string c = "qwertyuioplkjhgfdsazxcvbnm", cc, a;
bool judge()
{
int r = cc.size();
for( int k = 0 ; k < r ; k ++)
{
if(cc[k] != cc[r-k-1])
return false;
}
return true;
}
int main()
{
cin.sync_with_stdio(false);
while( cin >> a )
{
int l = a.size();
cc = "";
for( int i = 0; i <= l; i++ )
{
for ( int j = 0; j < 26; j++ )
{
cc = "";
for(int k = 0 ; k < i ; k ++)
{
cc += a[k];
}
cc += c[j];
for( int k = i ; k < l ; k ++)
cc += a[k];
//cout << cc << endl;
if( judge() )
{
cout << cc << endl;
return 0;
}
}
}
cout << "NA" << endl;
}
return 0;
}
B - Mr. Kitayuta's Colorful Graph:给出一张图,边权为颜色值,q个询问,从起点到终点有多少种只经过一种颜色的就能到达终点的路径
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int N = 150;
int a[N][N][N];
int main()
{
int n, m, q;
while(~scanf("%d%d", &n, &m))
{
int u, v, w;
memset( a, 0, sizeof( a ));
while(m--)
{
scanf("%d%d%d", &u, &v, &w);
a[u][v][w] = 1;
a[v][u][w] = 1;
}
for( int k = 1; k <= n; k++ )
{
for( int i = 1; i <= n; i++ )
{
for( int j = 1; j <= n; j++ )
{
for( int c = 1; c <= 100; c++ )
{
if( a[i][k][c] && a[k][j][c] )
{
a[i][j][c] = 1;
}
}
}
}
}
scanf("%d", &q);
while( q-- )
{
int ans = 0;
int u, w;
scanf("%d%d", &u, &v);
for( int i = 1; i <= 100; i++ )
if( a[u][v][i] )
ans++;
printf("%d\n", ans);
}
}
return 0;
}
D. Mr. Kitayuta's Technology:给出一张有向图,且题中按照给出的信息从起点到终点必须传递到,但是使添加的边数尽量小.比如题目第一组样例,1~4和1~3的边就不必添加,因为可以通过2传递到
思路:首先确定一个弱连通图里如果没有环,那么需要n-1条边,否则需要n条,所以只要tarjan缩点,然后并查集维护就行.
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010;
int head[N];
int block[N];
int DFN[N];
int low[N];
int num[N];
bool mark[N];
int father[N];
bool instack[N];
bool vis[N];
stack <int> st;
int tot, sccnum, ord, n, m, cnt;
struct node
{
int next;
int to;
}edge[N << 1];
void init ()
{
memset (head, -1, sizeof(head));
memset (mark, 0, sizeof(mark));
memset (father, -1, sizeof(father));
memset (DFN, -1, sizeof(DFN));
memset (num, 0, sizeof(num));
memset (instack, 0, sizeof(instack));
memset (vis, 0, sizeof(vis));
tot = sccnum = ord = 0;
while (!st.empty())
{
st.pop();
}
}
int find (int x)
{
if (father[x] == -1)
{
return x;
}
return father[x] = find (father[x]);
}
void addedge (int from, int to)
{
edge[tot].to = to;
edge[tot].next = head[from];
head[from] = tot++;
}
void tarjan (int u)
{
DFN[u] = low[u] = ++ord;
instack[u] = 1;
st.push (u);
for (int i = head[u]; ~i; i = edge[i].next)
{
int v = edge[i].to;
if (DFN[v] == -1)
{
tarjan (v);
low[u] = min (low[u], low[v]);
}
else if (instack[v])
{
low[u] = min (low[u], DFN[v]);
}
}
if (low[u] == DFN[u])
{
int v;
++sccnum;
do
{
v = st.top();
st.pop();
instack[v] = 0;
block[v] = sccnum;
++num[sccnum];
}while (v != u);
}
}
void solve ()
{
for (int i = 1; i <= n; ++i)
{
if (DFN[i] == -1)
{
tarjan (i);
}
}
int ans = 0;
for (int i = 1; i <= sccnum; ++i)
{
if (num[i] > 1)
{
mark[i] = 1;
}
}
for (int u = 1; u <= n; ++u)
{
for (int i = head[u]; ~i; i = edge[i].next)
{
int v = edge[i].to;
int fa = find (block[u]);
int fb = find (block[v]);
if (fa != fb)
{
father[fa] = fb;
num[fb] += num[fa];
mark[fb] |= mark[fa];
}
}
}
for (int i = 1; i <= sccnum; ++i)
{
if (father[i] == -1)
{
if (mark[i])
{
ans += num[i];
}
else
{
ans += num[i] - 1;
}
}
}
printf("%d\n", ans);
}
int main ()
{
int u, v;
while (~scanf("%d%d", &n, &m))
{
init();
for (int i = 1; i <= m; ++i)
{
scanf("%d%d", &u, &v);
addedge (u, v);
}
solve ();
}
return 0;
}