#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
int main()
{
int n, m;
while(~scanf("%d%d", &n, &m))
{
int cnt = 0;
for( int i = 1; i <= n; i++ )
{
if( i % 2 )
{
for( int j = 1; j <= m; j++ )
{
printf("#");
}
}
else
{
if( cnt % 2 == 0 )
{
for( int j = 1 ;j < m; j++ )
printf(".");
printf("#");
}
else
{
printf("#");
for( int j = 2; j <= m; j++ )
printf(".");
}
cnt++;
}
puts("");
}
}
return 0;
}
B - Fox And Two Dots问给出的n*m的字符矩阵里面有没有大于等于2*2的由相同字符组成的小字符矩阵,由并查集判断下饥渴
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const double pi = acos(-1);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair <int, int> PLL;
int dir[4][2] = {1, 0, -1, 0, 0, 1, 0, -1};
const int N = 3000;
char mat[55][55];
bool vis[N][N];
struct E
{
int u, v;
}edge[N * N];
int father[N];
int find (int x)
{
if (father[x] == -1)
{
return x;
}
return father[x] = find (father[x]);
}
int main ()
{
int n, m;
while (~scanf("%d%d", &n, &m))
{
memset (vis, 0, sizeof(vis));
int ret = 0;
memset (father, -1, sizeof (father));
for (int i = 0; i < n; ++i)
{
scanf("%s", mat[i]);
}
for (int i = 0; i < n; ++i)
{
for (int j = 0; j < m; ++j)
{
int cnt = i * m + j;
for (int k = 0; k < 4; ++k)
{
int x = i + dir[k][0];
int y = j + dir[k][1];
if (x < 0 || x >= n || y < 0 || y >= m)
{
continue;
}
if (vis[cnt][x * m + y])
{
continue;
}
if (mat[x][y] != mat[i][j])
{
continue;
}
vis[cnt][x * m + y] = vis[x * m + y][cnt] = 1;
edge[ret].u = cnt;
edge[ret++].v = x * m + y;
// printf("%d %d\n", cnt, x * m + y);
}
}
}
bool flag = false;
for (int i = 0; i < ret; ++i)
{
int u = find (edge[i].u);
int v = find (edge[i].v);
if (u != v)
{
father[u] = v;
}
else
{
flag = true;
break;
}
}
if (flag)
{
printf("Yes\n");
}
else
{
printf("No\n");
}
}
return 0;
}
C - Fox And Names给出n个字符串,问有没有可能有这样一种26个字母间重新排序,比如(acb....xyz,(c的字典小比b小)),使得n个字符串以字典序排下来,若有多种可能随意输出一种。
拓扑排序即可,其实就是改变26个的相对权重大小(字典序大小),使得重新“定义”过的字符串满足相对的字典序。首先在“矛盾”的字符之间建边,最简单的情况下比如有3个字符串为“aio...” ,“cio...” ,“bio...”,那么可见这里的b 和 c就是矛盾的,在重新排列的26个字母中“ acb ..”就可以满足上面的例子。接下来就是跑一遍topo,确定下矛盾的字母间的相对子断续大小即可
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
#define pi acos(-1.0)
#define eps 1e-8
typedef long long ll;
const int inf = 0x3f3f3f3f;
int n;
char a[105][105];
int deg[30];
int len[105];
vector <int> v[105], ans;
queue <int> q;
void init()
{
while( !q.empty() )
q.pop();
for( int i = 0; i < n; ++i )
v[i].clear();
memset( deg, 0, sizeof( deg ) );
ans.clear();
}
bool judge( int x, int y )
{
for( int i = 0; i < len[x] && i < len[y]; ++i )
{
if( a[x][i] != a[y][i] )
{
deg[ a[y][i] - 'a' ] ++;
v[ a[x][i] - 'a' ].push_back( a[y][i] - 'a' );
return 1;
}
}
if( len[x] > len[y] )
return 0;
else
return 1;
}
bool topo( )
{
for( int i = 0; i < 26; i++ )
if( !deg[i] )
{
ans.push_back( i );
q.push( i );
}
while( !q.empty() )
{
int now = q.front();
q.pop();
for( int i = 0; i < v[now].size(); ++i )
{
int nxt = v[now][i];
--deg[nxt];
if( deg[nxt] == 0 )
{
q.push(nxt);
ans.push_back( nxt );
}
}
}
return ans.size() == 26;
}
int main()
{
while( ~scanf( "%d", &n ) )
{
init();
for( int i = 1; i <= n; i++ )
{
scanf("%s", a[i]);
len[i] = strlen( a[i] );
}
bool OK = 1;
for( int i = 1; i <= n; ++i )
{
for( int j = i + 1; j <= n; ++j )
{
if( !judge( i, j ) )
OK = 0;
}
}
if( OK && topo() )
{
for( int i = 0; i < 26; i++ )
printf("%c", ans[i] + 'a');
puts("");
}
else
puts("Impossible");
}
return 0;
}