循序渐进学习时间复杂度

一、浅谈算法

学习软件开发这么多年,常常听到程序=数据结构+算法,但是很多人对这句话提出质疑,因为实际项目开发的时候大部分人是做螺丝钉的角色,而且大部分甘于做螺丝钉的角色,就会认为实际项目,只是完成业务开发而已,去哪都是增删改查,数据结构根本用不到。我认为,算法和基本的数据结构是非常重要的,对于一个合格的程序猿来说,有时候我们没有涉及到,只是别人把需要的事情都给我们做了,比如的java版本的hashmap,采用红黑树的结构,提高了更多效率,软件开发高速发展的同时,编程的门槛也会越来越低,只有了解了最本质的才会不被技术淘汰。

算法的五大特性:

1.有穷性:不是数学,算法比较合理,每一步在规定时间内进行

2.确定性:每一条指令都有一个明确的含义

3.可行性:算法可以执行

4.输入0或者多个

5.输出 只有一个

算法设计的四大要求:

1.正确性

2.可读性

3.健壮性:容错能力,输入数据非法的时候,不会产生的输出结果

边界问题 (数组的长度的判断,非法字段,树Root是否为空)

4.效率和存储

注:1.研究算法的复杂度,侧重的是研究算法随着输入规模扩大增长量的一个抽象,而不是精确定位执行多少次
2. 不关心编译语言,不关心机器

所以我们应该用什么方式进行算法的度量方式呢?接下来我们聊聊时间复杂度

二、时间复杂度

1.概述

我们知道程序的效率可以称之为程序的时间复杂度,通俗点说就是算法执行的时间,所以将算法中基本操作的执行次数作为算法时间复杂度的度量。

比如:如何求1+2+… n的结果

第一种:O(n)

int sum=0;
	for(int i=0;i<=n;i++){
	  sum=sum+i;
	}

第二种:O(1)

	int i=0;
	int sum=0;
    sum =(1+n)*n/2;

上述的例子可以说明如果不同的策略对待同一个需求而已,时间复杂度是不一样的,算法的优化,时间复杂度越低也是算法优化的目的之一。

**时间复杂度:**算法中基本语句重复执行的次数是问题规模n的某个函数f(n),算法的时间量度记作: T ( n ) = O ( f ( n ) ) T(n)=O(f(n)) T(n)=O(f(n))表示随着n的增大,算法执行的时间的增长率和f(n)的增长率相同,称渐近时间复杂度。

**函数的渐进增长:**给定两个函数,f(n).g(n),如果存在一个整数N,使得对于所有的n>N,f(n)总是比g(n)大,那么我们说f(n)的增长渐进快于g(n)

上面讨论的时间复杂度是官方解释,仔细可以看时间复杂度可以表示渐进函数的抽象形式即可。

2.时间复杂度的记法:

1.大O记号 (常用)

假设 f ( n ) 和 g ( n ) f(n)和g(n) f(n)g(n)的定义域是非负整数,存在两个正整数c和n0,使得n>n0的时候, f ( n ) ≤ c ∗ g ( n ) f(n)≤c*g(n) f(n)cg(n),则 f ( n ) = O ( g ( n ) ) f(n)=O(g(n)) f(n)=O(g(n))。可见 O ( g ( n ) ) O(g(n)) O(g(n))可以表示算法运行时间的上界。 O ( g ( n ) ) O(g(n)) O(g(n))表示的函数集合的函数是阶数不超过 g ( n ) g(n) g(n)的函数。

例如: f ( n ) = 2 ∗ n + 2 = O ( n ) f(n)=2*n+2=O(n) f(n)=2n+2=O(n)

证明:
当 n &gt; 3 的 时 候 , 2 ∗ n + 2 &lt; 3 n , 所 以 可 选 n 0 = 3 , c = 3 , 则 n &gt; n 0 的 时 候 , f ( n ) &lt; c ∗ ( n ) , 所 以 f ( n ) = O ( n ) 。 当n&gt;3的时候,2*n +2&lt;3n,所以可选n0=3,c=3,则n&gt;n0的时候,f(n)&lt;c*(n),所以f(n)=O(n)。 n>32n+2<3nn0=3,c=3n>n0f(n)<c(n)f(n)=O(n)

现在再证明 f ( n ) = 2 ∗ n + 2 = O ( n 2 ) f(n)=2*n+2=O(n^2) f(n)=2n+2=O(n2)

证明: 当 n &gt; 2 的 时 候 , 2 ∗ n + 2 &lt; 2 ∗ n 2 , 所 以 可 选 n 0 = 2 , c = 2 , 则 n &gt; n 0 的 时 候 , f ( n ) &lt; c ∗ ( n 2 ) , 所 以 f ( n ) = O ( n 2 ) 。 当n&gt;2的时候,2*n+2&lt;2*n^2,所以可选n0=2,c=2,则n&gt;n0的时候,f(n)&lt;c*(n^2),所以f(n)=O(n^2)。 n>22n+2<2n2n0=2,c=2,n>n0f(n)<c(n2)f(n)=O(n2)

同理可证 f ( n ) = O ( n a ) f(n)=O(n^a) f(n)=O(na),a>1

2.Ω记号

f ( n ) &gt; c ∗ g ( n ) f(n) &gt; c*g(n) f(n)>cg(n)
Ω记号与大O记号相反,他可以表示算法运行时间的下界。 Ω ( g ( n ) ) Ω(g(n)) gn表示的函数集合的函数是所有阶数超过g(n)的函数。

例如: f ( n ) = 2 ∗ n 2 + 3 ∗ n + 2 = Ω ( n 2 ) f(n)=2*n^2+3*n+2=Ω(n^2) f(n)=2n2+3n+2=(n2)

证明: 当 n &gt; 4 的 时 候 , 2 ∗ n 2 + 3 ∗ n + 2 &gt; n 2 , 所 以 可 选 n 0 = 4 , c = 1 , 则 n &gt; n 0 的 时 候 , f ( n ) &gt; c ∗ ( n 2 ) , 所 以 f ( n ) = Ω ( n 2 ) 。 当n&gt;4的时候,2*n^2+3*n+2&gt;n^2,所以可选n0=4,c=1,则n&gt;n0的时候,f(n)&gt;c*(n^2),所以f(n)=Ω(n^2)。 n>42n2+3n+2>n2n0=4,c=1,n>n0f(n)>c(n2)f(n)=(n2)

同理可证 f ( n ) = Ω ( n ) , f ( n ) = Ω ( 1 ) f(n)=Ω(n),f(n)=Ω(1) f(n)=(n),f(n)=(1)

3.Θ记号

Θ记号介于大O记号和Ω记号之间。他表示,存在正常数c1,c2,n0,当n>n0的时候, c 1 ∗ g ( n ) ≤ f ( n ) ≤ c 2 ∗ g ( n ) c1*g(n)≤f(n)≤c2*g(n) c1g(n)f(n)c2g(n),则f ( n ) = Θ ( g ( n ) ) (n)=Θ(g(n)) (n)=Θ(g(n))。他表示所有阶数与g(n)相同的函数集合。

4.小o记号

f ( n ) = o ( g ( n ) ) 当 且 仅 当 f ( n ) = O ( g ( n ) ) 且 f ( n ) ≠ Ω ( g ( n ) ) f(n)=o(g(n))当且仅当f(n)=O(g(n))且f(n)≠Ω(g(n)) f(n)=o(g(n))f(n)=O(g(n))f(n)̸=(g(n))。也就是说小o记号可以表示时间复杂度的上界,但是一定不等于下界。

5.例子

假设f(n)=2n^2+3n+5,

则f(n)=O(n^2)或者f(n) = O(n3)或者f(n)=O(n4)或者……

f(n)=Ω(n^2)或者f(n)=Ω(n)或者f(n)=Ω(1)

f(n)=Θ(n^2)

f(n) = o(n3)或者f(n)=o(n4)或者f(n)=o(n^5)或者……


3.时间复杂度类型

1.常数阶

如上面的例子可以知道,执行次数是常数,可以定为O(1)

	int i=0;
	int sum=0;
    sum =(1+n)*n/2;

2.线性阶

如上述的例子可以知道,单次循环n,定为O(n)

int sum=0;
	for(int i=0;i<=n;i++){
	  sum=sum+i;
	}

3.对数阶

下面代码就表示是 O ( l o g n ) O(logn) O(logn)

  while (left <= right) {
            int mid = (left - right) / 2 + right;
            if (target == nums[mid]) {
                return mid;
            } else if (target > nums[mid]) {
                left = mid + 1;
            } else {
                right = mid - 1;
            }
        }

4.函数调用

main方法调用外部方法,两个方法都是一层循环,则 O ( n 2 ) O(n^2) O(n2)

int main(int argc, char *argv[])
{  
for(int i=0;i<n;i++){  
	  fun(n);
	}
}
void fun(int count){   
  for(int i=0;i<count;i++){
    printf();
  }
}

常见时间复杂度的比较:

$ O(1)<O(logn)<O(n)<O(nlogn)<O(n2)…<O(n!)<O(nn)$

4. 时间复杂度的计算

1.计算规则

1) 加法规则

$T(n,m) = T1(n) + T2(n) = O ( max (f(n), g(m) ) $

  1. 乘法规则

$T(n,m) = T1(n) * T2(m) = O (f(n) * g(m)) $
O ( n ) ∗ O ( m ) = O ( n ∗ m ) O(n)*O(m)=O(n*m) O(n)O(m)=O(nm)

3)一个特例

在大O表示法里面有 T ( n ) = T 1 ( n ) ∗ T 2 ( n ) = O ( c ∗ f ( n ) ) = O ( f ( n ) ) T(n) = T1(n) * T2(n) = O ( c*f(n) ) = O( f(n) ) T(n)=T1(n)T2(n)=O(cf(n))=O(f(n)). 一个特例,如果 T 1 ( n ) = O ( c f ( n ) ) T1(n) = O(cf(n)) T1(n)O(cf(n)), c是一个与n无关的任意常数,$T2(n) = O ( f(n) ) $则有

总结:

1.用常数1取代所有的加法常数 t(n)=5 O(1)

2.修改后的函数中,只保留最高阶数

3.如果最高阶数的常数部分存在不是1,变成1。

比如:
T ( n ) = n 3 + n 2 + 29 , 此 时 时 间 复 杂 度 为 O ( n 3 ) 。 T ( n ) = 3 n 3 , 此 时 时 间 复 杂 度 为 O ( n 3 ) T(n) = n^3 + n^2 + 29,此时时间复杂度为 O(n^3)。 T(n) = 3n^3,此时时间复杂度为 O(n^3) T(n)=n3+n2+29O(n3)T(n)=3n3O(n3)

2.主定理

在算法分析中,主定理(英语:master theorem)提供了用渐近符号(大O符号)表示许多由分治法得到的递推关系式的方法。这种方法最初由Jon Bentlery,Dorothea Haken和James B. Saxe在1980年提出,在那里被描述为解决这种递推的“天下无敌法”(master method)。此方法经由经典算法教科书Cormen,Leiserson,Rivest和Stein的《算法导论》 (introduction to algorithm) 推广而为人熟知

解释: 上面的主定理就是根据递归式,我们需要找到它的时间复杂度,这里为了不区别其他的表示法,全部记为大O表示法,

例子1:

假设问题规模为N,某一个递归算法的时间程度记T(N),已知T(1) = 0,T(N) = T(N/2) + N,求用O表示该算法的时间复杂度?

分析:直接套用公式可知,a = 1, b = 2 ,f(n) = N , 主定理主要和 n log ⁡ b a n^{\log_b a} nlogba做比较,带入可得 n log ⁡ b a = 1 n^{\log_b a}= 1 nlogba=1
所以f(n)> n log ⁡ b a n^{\log_b a} nlogba ,符合条件三,所以T(n) = O(n)。

例子2:

假设问题规模为N,某一个递归算法的时间程度记T(N),已知T(1) = 0,T(N) = 2T(N/2) + N/2,求用O表示该算法的时间复杂度?

分析:直接套用公式可知,a = 2, b = 2 ,f(n) = N/2 , 主定理主要和 n log ⁡ b a n^{\log_b a} nlogba做比较,带入可得 n log ⁡ b a = n n^{\log_b a}= n nlogba=n
这里需要注意,f(n)和 n log ⁡ b a n^{\log_b a} nlogba做比较 ,比较的是它们的渐近增长率,所以f(n)= n log ⁡ b a n^{\log_b a} nlogba ,符合条件二,都是一次函数,所以T(n) = O(nlogn)。

例子3:

求下面代码的时间复杂度:

void Hanoi(int n, char a, char b, char c)//a为原始柱,b为借助柱,c为目标柱
{
    if (n == 1)
    {
        Move(a, c);//只有一个盘子时直接移
    }
    else
    {
        Hanoi(n - 1, a, c, b);//将A柱子上n-1个盘子借助C柱子移到B上
        Move(a, c);//将A最后一个盘子移到C上
        Hanoi(n - 1, b, a, c);//将B柱子借助空A柱子移到C上
    }
}

分析:我们可以看出,用递归来解决汉诺塔问题是非常方便的选择,最后我们来分析一下汉诺塔问题的时间复杂度。
设盘子个数为n时,需要T(n)步,把A柱子n-1个盘子移到B柱子,需要T(n-1)步,A柱子最后一个盘子移到C柱子一步,B柱子上n-1个盘子移到C柱子上T(n-1)步。 得递推公式T(n)=2T(n-1)+1 。这个递推式子不符合主定理,所以需要运用高中的基础数学知识,
由递推式可以知道,凑方法,凑成等比数列,凑成通项公式 O ( 2 n ) O(2^n) O2n

例子4:

假设问题规模为N,某一个递归算法的时间程度记T(N),已知T(1) = 0,T(N) = T(N- 1) + N,求用O表示该算法的时间复杂度?

分析:首先要看主定理的限定的条件,b > 1 才可以执行这个主定理,这里需要 T ( N ) = T ( N − 1 ) + N 变 成 T ( N ) − T ( N − 1 ) = N 。 可 以 T ( 1 ) , T ( 2 ) . . . . T ( N ) 叠 加 后 可 以 算 出 T ( N ) 的 通 项 公 式 。 可 以 计 算 O ( n 2 ) T(N) = T(N- 1) + N 变成 T(N) - T(N- 1) = N。 可以T(1) ,T(2) .... T(N) 叠加后可以算出T(N)的通项公式。 可以计算O(n^2) T(N)=T(N1)+NT(N)T(N1)=NT1T2....T(N)TNOn2

三、空间复杂度

类比于时间复杂度的讨论,一个算法的空间复杂度是指该算法所耗费的存储空间,计算公式计作:S(n) = O(f(n))。其中 n 也为数据的规模,f(n) 在这里指的是 n 所占存储空间的函数。一般情况下,我们的程序在机器上运行时,刨去需要存储程序本身的输入数据等之外,还需要存储对数据操作的「存储单元」。如果输入数据所占空间和算法无关,只取决于问题本身,那么只需要分析算法在实现过程中所占的「辅助单元」即可。如果所需的辅助单元是个常数,那么空间复杂度就是 O(1)。


参考:
https://www.jianshu.com/p/f4cca5ce055a

https://blog.csdn.net/qq_33274645/article/details/52688025

https://mp.weixin.qq.com/s/9njtnqfAatjmjPh4geETqA


  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值