pytorch的切片

torch.index_select()的示例

x = torch.randn(3, 4)
print(x)

indices = torch.LongTensor([0, 2])
y = torch.index_select(x, 0, indices)
print(y)

z = torch.index_select(x, 1, indices)
print(z)

运行结果:
这里写图片描述
另一种示例:

embedding = nn.Embedding(4, 3)
idxs = [1,2, 3]
tensor = torch.LongTensor(idxs)
ids = autograd.Variable(tensor)
embs = embedding(ids)
print(embs)
print('&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&')
embs = embs[1:,:]
print(embs)
print('*******************************')
head = torch.rand(1, 3)
head = autograd.Variable(head)
result = torch.cat((head, embs), 0)
print(result)

结果如下:
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值