[算法学习笔记]分治法——最大子序列和问题

何为分治法?

在上一篇文章中讲到归并排序就有提到过分治法,这里在重复一次:

分治法

分治法采用了递归的结构,将原问题分成几个规模较小但是类似于原问题的子问题, 通过递归的方式再来求解这些小问题,然后将子问题的解合并来建立原问题的解,分治法在每成递归时都有三个步骤:

  • 分解: 将原问题分解成若干个小问题,这些子问题是原问题的规模较小的实例
  • 解决: 解决这些子问题,通过递归的方式求解子问题,直到自问题的规模足够小,可以直接求解
  • 合并: 将这些子问题的解合并成原问题的解

最大子序列和问题

比如说有一个数组:

4 , -3, 5, -2, -1, -1, 2, 6, -2

对于这样一个数组,它的最大子序列和为11(从第一个元素到第七个)。
对于任意一个栗子,可以发现最大子序列和只有三种情况:

  • 出现在数组的左半部分
  • 出现在数组的右半部分
  • 出现在数组的中间部分,横跨左右两部分

(这不是废话么=_=)
而且对于左半部分或者右半部分,上述结论也成立,利用这特性,可以写出相应的递归,递归结束的条件是当只有一个元素时,判断这个元素是否大于零,大于零便返回这个数,否则返回零。
然后求出左边最大值,右边最大值和横跨两边的最大值,返回这三个值中的最大值
c语言代码如下:

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define MAX_N 20

int max3(int, int, int);
int maxSubArrayAns(int []);
int maxSubArray(int [], int, int);

int main(){
    int nums[MAX_N];
    int i;
    srand(time(0));
    printf("array: \n");
    for(int i = 0; i < MAX_N; i++){
        nums[i] = (int)(rand() % (MAX_N * 2) - MAX_N);
        printf("%d\t", nums[i]);
    }
    printf("\n");
    printf("The max subsequen sum is %d.\n", maxSubArrayAns(nums));


    return 0;
}

int max3(int a, int b, int c){
    if(a > b)
        return a > c ? a : c;
    else
        return b > c ? b : c;
}

int maxSubArray(int nums[], int left, int right){
    int maxLeftSum, maxRightSum;
    int maxLeftBorderSum, maxRightBorderSum;
    int leftBorderSum, rightBorderSum;

    if(left == right)
        if(nums[left] > 0)
            return nums[left];
        else
            return 0;

    int mid = (left + right) / 2, i;
    maxLeftSum = maxSubArray(nums, left, mid);
    maxRightSum = maxSubArray(nums, mid + 1, right);

    maxLeftBorderSum = 0, leftBorderSum = 0;
    for(i = mid; i >= left; i--){
        leftBorderSum += nums[i];
        if(leftBorderSum > maxLeftBorderSum)
            maxLeftBorderSum = leftBorderSum;
    }

    maxRightBorderSum = 0, rightBorderSum = 0;
    for(i = mid + 1; i <= right; i++){
        rightBorderSum += nums[i];
        if(rightBorderSum > maxRightBorderSum)
            maxRightBorderSum = rightBorderSum;
    }

    return max3(maxLeftSum, maxRightSum, maxLeftBorderSum + maxRightBorderSum);
}

int maxSubArrayAns(int nums[]){
    return maxSubArray(nums, 0, MAX_N - 1);
}

使用分治法的话,平均时间复杂度为Θ(n lg n)。实际上解决最大子序列问题还有一种更加快速的方法,这种方法的时间复杂度是Θ(n),是一种线性的算法

int maxSubArrayAns(int nums[]){
    int i, thisSum = 0, maxSum = 0;
    for(i = 0; i < MAX_N - 1; i++){
        thisSum += nums[i];
        if(thisSum > maxSum)
            maxSum = thisSum;
        else if(thisSum < 0)
            thisSum = 0;
    }

    return maxSum;
}
  • 5
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值