deep-learning
文章平均质量分 74
芝麻芝麻哼
计算机视觉、机器学习、图像处理、三维重建、IT
展开
-
caffe(一): 利用自带MNIST例程训练手写字符识别模型
因为工作的需要,近期正式开始学习深度学习,采用的深度学习框架是caffe。为了更快的了解caffe训练模型的整体流程,首先从caffe自带的MNIST例程开始。准备数据因为所用的linux操作系统不能联网,所以不能编写脚本来下载数据集,只能先下载下来,然后导入自己的根目录下。 下载网址: the minist dataset 下载下来的文件如下: train开头的文件夹代表训练集,t10原创 2017-06-30 16:46:08 · 1043 阅读 · 0 评论 -
caffe(二): 利用训练好的MNIST模型测试自己的手写字符图片
上篇博客已经利用caffe针对MNIST数据集训练出了lenet_iter_10000.caffemodel, 因为要将此模型应用到自己的实际任务中。所以本篇博客记录利用训练好的lenet_iter_10000.cafemodel来测试自己的手写字符图片。准备待测试图片本篇博客选取的测试图片是大神符生成程序自带的字符图片(2017年Robomasters机器人大赛),为了之后测试方便,将图片统一命名原创 2017-07-03 15:07:04 · 927 阅读 · 0 评论 -
caffe(三):MNIST数据集可视化
前言在手写字符识别任务中,需要将MNIST数据集打开,可视为png图片,然后重新组装新的测试集和验证集。代码实现//author: zhimazhimaheng //time: 20170719 //E-mail:1439352516@qq.com#include<fstream> #include<iostream> #include"opencv2/core/core.hpp" #include原创 2017-07-19 10:18:57 · 638 阅读 · 0 评论