Spark上矩阵运算库(三)代码重构与优化

本文介绍了将项目代码重构为使用Spark MLlib的矩阵API,对比了使用新API后的性能提升,并讨论了未来优化方向,包括矩阵API扩展、调用breeze库、shuffle过程优化等。
摘要由CSDN通过智能技术生成

 

迁往MLlib的API

Spark的MLlib库中提供了分布式矩阵的API,本着不重复造轮子的原则,目前项目将代码重构使用MLlib提供的矩阵API,这些API都在org.apache.spark.mllib.linalg.distributed 包内,Spark的官方文档有一个简单的相关介绍:http://spark.apache.org/docs/latest/mllib-basics.html

本项目主要使用的API是 IndexedRowMatrix IndexedRow ,其中IndexedRow是 (Long, Vector)的封装,两个参数分别是索引index和矩阵一行向量Array[Double],而IndexedRowMatrix则由RDD[IndexedRow]实例化得到。

More spark-way-progaming

众所周知,Spark推荐使用函数式编程语言scala进行开发,而且由于涉及内存方面的迭代操作,所以即使同样能得到相同的结果,程序写得好坏会对程序执行时间、效率有着相当大的影响,目前我重构了代码,修改了算法,完全抛弃了collect()的相关action,程序执行的效果在下一节阐明,这也是我将该部分称之为more spark-way-programing 的原因。当然,如何更加

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值