离散卷积和快速傅里叶变换的解释和实施步骤

本文介绍了循环卷积的概念,包括卷积矩阵和环形矩阵,并通过实例展示了如何利用离散傅里叶变换(DFT)和快速傅里叶变换(FFT)进行高效计算。讨论了时域卷积与频域乘积的关系,并提供了使用NumPy计算FFT的提示。
摘要由CSDN通过智能技术生成



💁 新人博主,多多支持

👋 本文由 EasyAI 原创,首发于 CSDN🙉

⌚️ 欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!

😎未来很长,值得我们全力奔赴更美好的生活✋




什么是循环卷积、卷积矩阵和环形矩阵?如何使用FFT?


循环卷积

首先,我们来回顾一下什么是循环卷积。在离散序列(如向量)上,循环卷积是两个离散数据序列的卷积,它在最大限度地提高某种普通过滤操作的效率方面起着重要作用[1]。根据定义,循环卷积可以被正式描述如下。


这里,向量x的长度为T,而向量y的长度为τ。如果我们遵循循环卷积的定义,那么得到的向量z的长度也是T,与向量x相同。

根据循环卷积的定义,我们可以用一些简单的例子来帮助理解这个概念。


可以看出,两个向量的环形卷积基本上采取线性系统。它基本上提供了对建立卷积矩阵和环形矩阵的见解。




卷积矩阵

按照上述符号,如果我们有向量x(长度为T)和y(长度为τ),那么循环卷积可以写成一个线性方程组。

为了检查如何通过使用卷积算子建立卷积矩阵,我们利用以下例子。

在这种情况下,卷积矩阵有5行(与x的长度相同)和3列(与τ相同),其列由以下公式给出

  • ( x 1 x1 x1, x 2 x2 x2, x 3 x3 x3, x 4 x4 x4, x 5 x5 x5),从$x 1 到 1到 1x5$开始。

  • ( x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值