生成对抗:Pix2Pix

cGAN : Pix2Pix

  生成对抗网络还有一个有趣的应用就是,图像到图像的翻译。例如:草图到照片,黑白图像到RGB,谷歌地图到卫星视图,等等。Pix2Pix就是实现图像转换的生成对抗模型,但是Pix2Pix中的对抗网络又不同于普通的GAN,称之为cGAN,全称是:conditional GAN。

cGAN和GAN的区别:
  • 传统的GAN从数据中学习从随机噪声向量zzz到真是图像yyy的映射:G(z)→yG(z)\to yG(z)y
  • 条件GAN学习的是学习从输入图像xxx和随机噪声zzz到目标图像yyy的映射:G(x,z)→yG(x, z) \to yG(x,z)y
  • 传统的GAN中判别器只根据真实或生成图像辨别真伪:D(y)D(y)D(y) | D(G(x))D(G(x))D(G(x))
  • 条件GAN中判别器还加入了,观察图像xxxD(x,y)D(x, y)D(x,y) | D(x,G(x,z))D(x, G(x, z))D(x,G(x,z))
  • 在cGAN中,生成器损失中又增加了L1\mathcal L_1L1损失
cGAN的Loss

LcGAN(G,D)=Ex,y[logD(x,y)]+Ex,z[log(1−D(x,G(x,z))]\mathcal L_{cGAN}(G,D) = E_{x,y}[log D(x,y)] + E_{x,z}[log(1 - D(x, G(x, z))]LcGAN(G,D)=Ex,y[logD(x,y)]+Ex,z[log(1D(x,G(x,z))]

LL1(G)=Ex,y,z[∣∣y−G(x,z)∣∣1]\mathcal L_{L1}(G) = E_{x, y, z}[||y - G(x, z)||_1]LL1(G)=Ex,y,z[∣∣yG(x,z)1]

G∗=argminGmaxDLcGAN(G,D)+λLL1(G)G^* = {argmin}_{G}max_{D}\mathcal L_{cGAN}(G,D) + \lambda \mathcal L_{L1}(G)G=argminGmaxDLcGAN(G,D)+λLL1(G)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值