cruskal算法的思想很简单,就是把所有边按权值大小排序,由小到大,然后依次选一条边,如果这条边加入最小支撑树中不会造成回路,就把这条边加进去,否则取下一条边继续探测。如果这个图有 n 个顶点,则选出 n-1 条边即可。
思想很简单,可实现却涉及到一种特殊的数据结构,叫不相交集。
这种集合有两个主要的操作,一个是合并,就是将两个元素合并到这个集合中,合并时按秩合并的,秩大的作为秩小的父节点。
一个叫查找,就是返回这个元素的父节点,查找 的时候会执行路径压缩,也就是所,如果 a 是 b 的父节点, b 又是 c 的父节点, c 又是 d 的父节点,这样查找 d 的父节点时,返回的是 d 的最终根节点,也就是 a, 同时会把 d 到 a 上的所有节点的父节点都置为 a。
代码如下
#include <iostream>
#include <vector>
#include <algorithm>
using n