Camera Style Adaptation for Person Re-identification-学习笔记

本文探讨了在个人身份验证中,不同相机造成的图像风格变化对识别效果的影响。通过引入相机风格适应(CamStyle)方法,使用CycleGAN进行图像间的风格转换,增加数据多样性以防止过拟合。同时,通过标签平滑正则化(LSR)缓解噪声问题,提高模型的泛化能力。实验表明,CamStyle方法在Market-1501和DukeMMC-reID数据集上取得了良好的效果,尤其与LSR结合时,性能得到持续提升。
摘要由CSDN通过智能技术生成

一、摘要

        如果可以在训练集中增加更多样本来了解摄像机之间的风格差异,就能够解决个人身份识别中的数据稀缺问题,并学习不同摄像机之间的不变特征。本文使用cycleGAN完成镜头间图片转换,损失函数使用cycleGAN loss 和 identify mapping loss。增加数据多样性以防止过度拟合,但是也会产生相当程度的噪声。为了缓解这个问题,在改进后的版本中,进一步在样式转移样本上应用标签平滑正则化(LSR),以便他们的标签在训练期间柔和地分布。

二、算法模型


1. CycleGAN

        给定两个不同领域的数据集A和B,CycleGAN的目标是学习从A到B的映射。CycleGAN包含两个映射G: A -> B 和 F : B->A。其损失函数可以概述为:

2. Camera-aware Image-Image Translation

        为使得style transfer保持输入和输出之间的颜色一致性,在常规CycleGAN的损失函数中加入identity mapping loss,即身份映射损失:

3. Baseline Deep Re-ID Model 

        鉴于真实的和假的(风格转移的)图像都有ID标签,我们使用ID-discriminative embedding(IDE)来作为重识别的CNN模型。 使用Softmax损失,IDE将重识别训练视为图像分类任务。在实现中,所有输入图像都调整为256×128。使用ResNet-50 作为主干,并在ImageNet预训练模型进行微调。 放弃最后的1000维分类层并添加两个完全连接的层。第一个FC层的输出有1024个维度,命名为“FC-1024”,然后是BN,ReLU和Dropout。 第二个FC层的输出是C维的,其中C是训练集类的数量。

 

4. Training with CamStyle

        普通版本:新训练集中的每个样本属于单个人。 在训练期间,在每个小批量中,我们随机选择M个真实图像和N个假图像。 损失函数可以写成:

        交叉熵(定义损失):

        其中p(c)为预测的分布,q(c)为ground-truth分布:

        所以,转化为最大化groud-truth label的预测概率:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值