hdu5673Robot(卡特兰数+乘法逆元)

题目链接:点这里!!!


题意:

有一个机器人位于坐标原点上。每秒钟机器人都可以向右移到一个单位距离,或者在原地不动。如果机器人的当前位置在原点右侧,它同样可以向左移动单位距离。一系列的移动(左移,右移,原地不动)定义为一个路径。问有多少种不同的路径,使得n秒后机器人仍然位于坐标原点?答案可能很大,只需输出答案对1,000,000,007的模。

数据范围:

输入包含多组数据. 第一行有一个整数T(1≤T≤100), 表示测试数据的组数. 对于每组数据:
输入一个整数n(1≤n≤1,000,000)。



题解:(官方题解已经写的很详细了,我就做一些补充)

官方题解:

记路径长度为nn,那么机器人最多向右走\lfloor \frac{n}{2} \rfloor2n步并向左走\lfloor \frac{n}{2} \rfloor2n步。

Ans(n) = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} C_n^{2i} \ Catalan(i)Ans(n)=i=02nCn2i Catalan(i) 其中Catalan(n)Catalan(n)表示第nn个卡特兰数。

卡特兰数定义:Catalan(n)=\frac{C_{2n}^n}{n+1}Catalan(n)=n+1C2nn

递推公式Catalan(n)=\frac{4n-2}{n+1}\ Catalan(n-1)Catalan(n)=n+14n2 Catalan(n1)

基于nn的取值范围,此题可以预处理出1,000,0011,000,001以内的乘法逆元、卡特兰数。

每次询问,都可以递推组合数,或者提前一次性预处理好阶乘和阶乘的逆元得到组合数;累加组合数与相应卡特兰数的乘积,得到答案。

事实上,Ans(n)Ans(n)是第nn个默慈金数,还有更高效的递推公式:

M_{n+1}=M_n+ \sum_{i=0}^{n-1}M_i M{n-1-i} = \frac{(2n+3)M_n+3nM_{n-1}}{n+3}Mn+1=Mn+i=0n1MiMn1i=n+3(2n+3)Mn+3nMn1


2、卡特兰数的定义:卡特兰数

3、乘法的逆元:乘法的逆元

4、具体的还是看代码吧。


代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<sstream>
#include<algorithm>
#include<vector>
#include<bitset>
#include<set>
#include<queue>
#include<stack>
#include<map>
#include<cstdlib>
#include<cmath>
#define PI 2*asin(1.0)
#define LL long long
#define pb push_back
#define pa pair<int,int>
#define clr(a,b) memset(a,b,sizeof(a))
#define lson lr<<1,l,mid
#define rson lr<<1|1,mid+1,r
#define bug(x) printf("%d++++++++++++++++++++%d\n",x,x)
#define key_value ch[ch[root][1]][0]C:\Program Files\Git\bin
const int  MOD = 1E9+7;
const LL N = 1E6+15;
const int maxn = 1e4+1000;
const int letter = 130;
const int INF = 1e17;
const double pi=acos(-1.0);
const double eps=1e-8;
using namespace std;
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
int n;
LL cat[N],cn[N],c[N],inv[N];
LL solve(LL x){
    if(x<N) return inv[x];
    return (LL)solve(MOD%x)*(MOD-MOD/x)%MOD;
}
void init(){
    cn[0]=c[0]=cat[0]=1;
    inv[1]=1;
    for(LL i=2;i<N;i++)
        inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
    for(LL i=1;i<N-1;i++){
        cat[i]=(LL)cat[i-1]*(4*i-2)%MOD*inv[i+1]%MOD;
        c[i]=(LL)c[i-1]*i%MOD;
        cn[i]=1ll*solve(c[i]);
    }
}
LL cs(LL x,LL y){
    return c[x]*cn[y]%MOD*cn[x-y]%MOD;
}
int main(){
    init();
    int T;
    scanf("%d",&T);
    cat[1]=1;
    while(T--){
        scanf("%d",&n);
        LL ans=0;
        for(int i=0;i+i<=n;i++){
            ans+=cs(n,2*i)%MOD*cat[i];
            ans%=MOD;
        }
        printf("%I64d\n",ans);
    }
    return 0;
}




  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值