CVPR 2020 中的群组活动识别

CVPR 2020 中的群组活动识别聚焦于多个人行为的识别,如在体育赛事中的排球比赛场景。两篇论文分别采用Actor-Transformers模型和渐进关系学习方法,提升识别精度。Actor-Transformers借鉴自然语言处理的Transformers,而渐进关系学习通过强化关键人物动作特征。虽然没有开源代码,但这些工作展示了群体活动识别在时序和空间特征提取上的复杂性。
摘要由CSDN通过智能技术生成

动作(Action)往往指个体的行为,而活动(Activity)既可指个人的行为也可指群体行为。

CVPR 2020 中群组活动识别(Group Activity Recognition)即多个人行为的识别,包含多个个体不同的动作,比如排球比赛中的扣球,有人跳跃击打,有人俯身观察,有人双臂拦网。

群组活动识别在体育赛事分析和视频监控中有重要应用,近年来也吸引了不少研究学者的关注。

CVPR 2020 中两篇相关论文均为在体育赛事视频中的活动识别。

[1].Actor-Transformers for Group Activity Recognition

作者 | Kirill Gavrilyuk, Ryan Sanford, Mehrsan Javan, Cees G. M. Snoek

单位 | 阿姆斯特丹大学;Sportlogiq

论文 | https://openaccess.thecvf.com/content_CVPR_2020/papers/

Gavrilyuk_ActorTransformers_for_Group_Activity_Recognition_CVPR_2020_paper.pdf

该文从自然语言处理中借鉴Tra

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值