本文盘点ECCV 2020 与目标检测相关的研究,包含目标检测新范式、密集目标检测、点云目标检测、少样本目标检测、水下目标检测、域适应目标检测、弱监督目标检测、训练策略等,总计 41 篇,其中 2 篇 Oral,6 篇 Spotlight,开源或者将开源的有26篇。
其中有众多非常值得参考的工作,比如Facebook的DETR,还有两篇基于训练策略无痛涨点的方法。
下载包含这些论文的 ECCV 2020 所有论文:
目标检测新范式
End-to-End Object Detection with Transformers
作者 | Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko
单位 | Facebook AI
论文 | https://arxiv.org/abs/2005.12872
代码 | https://github.com/facebookresearch/detr (目前已有4.8K星)
解读 | 模型的跨界:我拿Transformer去做目标检测,结果发现效果不错
备注 | ECCV 2020 Oral
GeoGraph: Graph-based multi-view object detection with geometric cues end-to-end
作者 | Ahmed Samy Nassar, Stefano D'Aronco, Sébastien Lefèvre, Jan D. Wegner
单位 | IRISA, Universite Bretagne Sud;苏黎世联邦理工学院
论文 | https://arxiv.org/abs/2003.10151
基于图的检测方法在城市多视角目标检测中的应用,在精度和效率方面都好于之前的方法。
UFO²: A Unified Framework towards Omni-supervised Object Detection
作者 | Zhongzheng Ren , Zhiding Yu, Xiaodong Yang , Ming-Yu Liu,Alexander G. Schwing, Jan Kautz
单位 | 伊利诺伊大学厄巴纳-香槟分校;英伟达
论文 | https://www.ecva.net/papers/eccv_2020/
papers_ECCV/papers/123640290.pdf
这篇论文从最大限度利用数据集的标注出发,提出一种既能利用目标检测包围框标注,又能利用弱监督标注的目标检测训练统一框架,在实际应用中能最大限度利用训练样本,感觉这是个很好的想法。
密集目标检测
BorderDet: Border Feature for Dense Object Detection
作者 | Han Qiu, Yuchen Ma, Zeming Li, Songtao Liu, Jian Sun
单位 | 旷视科技;西安交通大学
论文 | https://arxiv.org/abs/2007.11056
代码 | https://github.com/Megvii-BaseDetection/BorderDet
备注 | ECCV 2020 Oral
该文提出了一种非常简单、高效的操作来提取物体边界极限点的特征,叫做“BorderAlign”。模型只增加很少的时间开销,可以在经典模型上实现FCOS(38.6 v.s. 41.4). FPN(37.1 v.s. 40.7)。
Anchor-free 目标检测
Corner Proposal Network for Anchor-free, Two-stage Object Detection
作者 | Kaiwen Duan, Lingxi Xie, Honggang Qi, Song Bai, Qingming Huang, Qi Tian
单位 | 国科大;华为;华中科技大学;鹏城实验室
论文 | https://arxiv.org/abs/2007.13816
代码 | https://github.com/Duankaiwen/CPNDet(即将)
备注 | ECCV 2020 Spotlight
目标检测错误分析工具
TIDE: A General Toolbox for Identifying Object Detection Errors
作者 | Daniel Bolya, Sean Foley, James Hays, Judy Hoffman
单位 | 佐治亚理工学院
论文 | https://arxiv.org/abs/2008.08115
代码 | https://github.com/dbolya/tide
主页 | https://dbolya.github.io/tide/
备注 | ECCV 2020 Spotlight
多目标检测和跟踪</