常见临近点算子的求解

本文将利用线性代数的知识推导出常见临近点算子的解,具体包括:

  • 投影算子
  • 一范数
  • 二次多项式
  • 核范数

临近点算子的标准形式

p r o x λ f ( v ) = arg ⁡ min ⁡ x ( f ( x ) + ( 1 / 2 λ ) ∥ x − v ∥ 2 2 ) = arg ⁡ min ⁡ x J ( x ) prox_{\lambda f}(v)=\arg\min_x\left(f(x)+(1/2\lambda)\|x-v\|_2^2\right)=\arg\min_xJ(x) proxλf(v)=argxmin(f(x)+(1/2λ)xv22)=argxminJ(x)

投影算子

f = I C f=I_C f=IC为凸集 C C C上的示性函数,则:
p r o x λ I C ( v ) = Π C ( v ) = arg ⁡ min ⁡ x ∈ C ∥ x − v ∥ 2 prox_{\lambda I_C}(v)=\Pi_C(v)=\arg\min_{x\in C}\|x-v\|_2 proxλIC(v)=ΠC(v)=argxCminxv2
即解为凸集 C C C上与点 v v v距离最小的点(投影点)。
示性函数的定义为
I C ( x ) = { 0 , x ∈ C + ∞ , x ∉ C I_C(x)=\left\{ \begin{aligned} 0 &, x\in C\\ +\infty&, x\notin C \end{aligned}\right. IC(x)={0+,xC,x/C
由示性函数的定义可知, x x x必然在 C C C的内部,示性函数的临近点算子是显然的。

二次函数

f ( x ) = ( 1 / 2 ) x T P x + q T x + r f(x)=(1/2)x^TPx+q^Tx+r f(x)=(1/2)xTPx+qTx+r
p r o x λ f ( v ) = ( I + λ P ) − 1 ( v − λ q ) prox_{\lambda f}(v)=(I+\lambda P)^{-1}(v-\lambda q) proxλf(v)=(I+λP)1(vλq)
二次函数是可微的,因此可以先求偏导数,然后利用最优化条件将偏导数置零。
∇ x J ( x ) = P x + q + 1 / λ ( x − v ) = 0 \nabla_x J(x)=Px+q+1/\lambda (x-v)=0 xJ(x)=Px+q+1/λ(xv)=0
整理后得到:
( I + λ P ) x = v − λ q (I+\lambda P)x=v-\lambda q (I+λP)x=vλq
两边求逆即可。

一范数

f = ∥ ⋅ ∥ 1 f=\|\cdot\|_1 f=1
p r o x λ f ( v ) = ( v − λ ) + − ( − v − λ ) + = { v i − λ , v i ≥ λ 0 , ∣ v i ∣ ≤ λ v i + λ , v i ≤ − λ prox_{\lambda f}(v)=(v-\lambda)_+-(-v-\lambda)_+= \left\{ \begin{aligned} v_i-\lambda &,v_i\ge\lambda \\ 0&, |v_i|\le\lambda \\ v_i+\lambda &,v_i\le-\lambda \end{aligned}\right. proxλf(v)=(vλ)+(vλ)+=viλ0vi+λ,viλ,viλ,viλ
由于一范数具有可分性,因此可以将原始的向量优化问题转换为标量优化问题,直接将 x x x表示标量 x i x_i xi v v v表示 v i v_i vi,得到:
J ( x ) = ∣ x ∣ + ( 1 / 2 λ ) ( x − v ) 2 J(x)=|x|+(1/2\lambda)(x-v)^2 J(x)=x+(1/2λ)(xv)2
此时可以通过讨论 x ≥ 0 , x &lt; 0 x\ge0, x&lt;0 x0,x<0来化为简单的二次函数优化问题。

核范数

核范数在矩阵 X X X上定义,为所有奇异值绝对值的和,即奇异值组成的向量的一范数。
∥ X ∥ ∗ = ∑ i ∣ λ i ∣ \|X\|_*=\sum_i |\lambda_i| X=iλi
关于核范数的临近点算子的优化目标为:
J ( X ) = ∥ X ∥ ∗ + ( 1 / 2 λ ) ∥ X − V ∥ F 2 J(X)=\|X\|_*+(1/2\lambda)\|X-V\|_F^2 J(X)=X+(1/2λ)XVF2
解为:
p r o x λ ∥ ⋅ ∥ ∗ = V d i a g ( p r o x λ f ( σ s ( A ) ) ) U prox_{\lambda \|\cdot\|_*}=Vdiag(prox_{\lambda f}(\sigma_s(A)))U proxλ=Vdiag(proxλf(σs(A)))U
其中 U σ s V U\sigma_sV UσsV A A A的SVD分解。

傅立叶神经网络(Fourier Neural Operator, FNO)是一种基于深度学习的新型框架,用于求解偏微分方程(Partial Differential Equations, PDEs)。它结合了物理领域的傅立叶变换和机器学习的神经网络思想,特别适合处理复杂的时空依赖的PDE问题。 FNO的基本原理是将输入的空间变量通过傅立叶变换转化为频域,然后在网络中进行特征提取和变换操作,最后再转换回空间域得到解。这种方法利用了傅立叶变换在解决线性和周期性问题方面的优势,并通过神经网络学习非线性的映射关系。 在Python中,可以使用PyTorch或TensorFlow这样的深度学习库来实现傅立叶神经算子模型。例如,`torchphysics`是一个包含FNO实现的库,它简化了构建和训练FNO模型的过程。你可以安装相应的库并按照其文档示例开始实验: ```python !pip install torchphysics import torchphysics as tp from torchphysics.models.pdes.fourier_neural_operator import FourierNeuralOperator # 创建一个FNO实例 model = FourierNeuralOperator(input_size=(spatial_dim, channels), output_size=1) # 准备数据集,包括输入特征和目标输出 dataset = ... # 填充你的数据集 # 定义损失函数和优化器 loss_fn = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 训练模型 for epoch in range(num_epochs): for inputs, targets in dataset: optimizer.zero_grad() outputs = model(inputs) loss = loss_fn(outputs, targets) loss.backward() optimizer.step() # 使用训练好的模型预测 predictions = model.predict(new_inputs) ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值