python 代码:
import cv2 as cv
import numpy as np
def add_salt_pepper_noise(image):
h, w = image.shape[:2]
nums = 10000
rows = np.random.randint(0, h, nums, dtype=np.int)
cols = np.random.randint(0, w, nums, dtype=np.int)
for i in range(nums):
if i % 2 == 1:
image[rows[i], cols[i]] = (255, 255, 255)
else:
image[rows[i], cols[i]] = (0, 0, 0)
return image
def gaussian_noise(image):
noise = np.zeros(image.shape, image.dtype)
m = (15, 15, 15)
s = (30, 30, 30)
cv.randn(noise, m, s)
dst = cv.add(image, noise)
cv.imshow("gaussian noise", dst)
return dst
src = cv.imread("./test.png")
h, w = src.shape[:2]
copy = np.copy(src)
copy = add_salt_pepper_noise(copy)
result = np.zeros([h, w*2,
OpenCV图像噪声处理详解
本文探讨了图像噪声的产生原因及其在OpenCV中的处理,包括椒盐噪声、高斯噪声和均匀分布噪声。提供了使用OpenCV进行图像中值滤波以去除椒盐噪声的示例,以及对高斯噪声和均匀分布噪声的简要介绍。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



