反垃圾邮件技术,NLP实战使用Transformers加载BERT模型进行垃圾(短信)邮件分类,识别垃圾短信(邮件)的NLP机器学习模型,并将其部署在Flask的Web平台上(全套代码)

这篇博客介绍了如何使用自然语言处理库Transformers加载BERT模型,进行垃圾邮件分类。内容包括数据预处理、模型训练、评估,以及如何将模型部署到Flask Web平台,实现在线预测。此外,还提到了朴素贝叶斯分类器在垃圾邮件识别中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

反垃圾邮件技术,NLP实战使用Transformers加载BERT模型进行垃圾(短信)邮件分类,识别垃圾短信(邮件)的NLP机器学习模型,并将其部署在Flask的Web平台上(全套代码)。

两种方案进行实现,一是NLP实战使用 Hugging Face Transformers 库中的 BertForSequenceClassification 类来加载BERT模型进行垃圾邮件分类。二是朴素贝叶斯分类器不但使用起来非常方便而且预测精度非常高。分别一步一步从下载公开数据集、数据清洗、模型训练、模型评估、将模型部署成一个web服务、线上实现预测等各个步骤完整开发过程实现。

在这里插入图片描述

为了阻止垃圾邮件(mail spam),电子邮件系统的用户和管理员都使用了各种反垃圾邮件技术(英语:anti-spam techniques)。这些技术中的一些已经被嵌入产品、服务和软件中来帮助用户和管理员减轻负担。没有一种技术能够完美地解决垃圾邮件问题,每一种都要在误识别合法邮件与漏掉某些垃圾邮件之间做出妥协。 反垃圾邮件技术可以被粗略地分为四类:必须由个人来处理的,可以被电子邮件管理员自动化处理的,可以被发送人自动处理的,以及被研究人员和执法人员所使用的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代码讲故事

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值