验证码AI识别准确率首次接近100%,结合AI agent实现自动化登陆,验证码识别全流程实战,20种大类验证码识别方案设计,包含实现源码

验证码AI识别准确率首次接近100%,结合AI agent实现自动化登陆,验证码识别全流程实战,20种大类验证码识别方案设计,包含实现源码。

很多网站服务会要求用户从一堆图片中选择特定物体,以此来验证用户是否真人。这种图片识别验证码(CAPTCHA)最常见的形式是在复杂的街景照片中识别自行车、斑马线、交通灯等日常物体。然而,最近有研究指出,一些本地运行的AI机器人使用特别训练的图像识别模型,已经做到100%的成功率,达到甚至超过了人类水平!

在这里插入图片描述

声明:本教程只能用于教学目的,如果用于非法目的与本人无关。

验证码杀手:YOLO模型
ETH苏黎世的博士生安德烈亚斯·普莱斯纳(Andreas Plesner)及其同事的最新研究聚焦于谷歌的reCAPTCHA v2,这一系统要求用户在图片网格中识别出包含诸如自行车、斑马线或交通灯等物体的街景图像。尽管谷歌几年前已经开始逐步淘汰该系统,转而采用“隐形”的reCAPTCHA v3以分析用户行为,但reCAPTCHA v2仍被全球数百万网站广泛使用,尤其在v3系统对用户的“人类”可信度打分过低时,常作为备用验证手段。

研究团队为了破解reCAPTC

内容概要:本文档《x86汇编指令.pdf》是一份简明的x86汇编语言教程,涵盖了从基础到高级的主题。首先介绍了汇编语言及其重要性,接着详细讲解了处理器的基本寄存器、实模式与保护模式下的内存操作、子程序和中断的使用、编译优化技术以及Linux下的x86汇编编程。文档还深入探讨了x86汇编指令集,包括数据传输、算术运算、逻辑运算、串操作、程序转移、伪指令、位操作和处理器控制指令。最后,文档介绍了GCC内联汇编的基础,包括AT&T汇编语法、内联汇编的基本形式和扩展形式、约束条件(constra)的使用以及一些实用的例子。 适合人群:具备一定编程基础,尤其是熟悉结构化程序设计语言的读者,如C/C++程序员,以及对底层编程和计算机架构感兴趣的开发者。 使用场景及目标:①帮助读者深入了解计算机内部运行机制,提高调试能力和程序性能;②掌握x86汇编语言的核心概念和技术,以便在需要高性能代码或硬件交互的场景中应用;③学习如何利用GCC内联汇编技术优化关键代码段,增强程序的执行效率。 其他说明:本文档不仅适合自学,也适用于有一定编程经验的开发者深入研究汇编语言。学习汇编语言不仅能提升对计算机底层的理解,还能为编写高效、稳定的程序打下坚实基础。文档强调了汇编语言的复杂性和挑战性,鼓励读者在实践中不断探索和创新。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代码讲故事

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值