问题描述 :
目的:使用C++模板设计并逐步完善图的邻接矩阵抽象数据类型(ADT)。
内容:
(1)请参照图的邻接矩阵模板类原型,设计并逐步完善图的邻接矩阵ADT。(由于该环境目前仅支持单文件的编译,故将所有内容都集中在一个源文件内。在实际的设计中,推荐将抽象类及对应的派生类分别放在单独的头文件中。)
(2)设计并实现一个算法,在已存在的图中查找指定元素值的结点,如查找成功,则删除之;否则,返回。图的存储结构采用邻接矩阵。将其加入到ADT中。
函数原型:
bool DeleteVer(const TypeOfVer &data); //往G中删除一个顶点
辅助函数原型:
int LocateVer(TypeOfVer data); //返回G中指定顶点的位置
注意:DG(有向图), DN(有向网), UDG(无向图), UDN(无向网)
图的邻接矩阵模板类原型参考如下:
template <class TypeOfVer, class TypeOfEdge>
class adjmatrix_graph{
private:
int Vers; //顶点数
int Edges; //边数
TypeOfEdge **edge; //存放邻接矩阵(TypeOfEdge表示顶点关系类型。对于无权图,用1或0,表示相邻否;对于带权图,则为权值类型)
TypeOfVer *ver; //存放结点值
TypeOfEdge noEdge; //邻接矩阵中的∞的表示值
string GraphKind; //图的种类标志
bool DFS(int u, int &num, int visited[]); //DFS遍历(递归部分)
public:
adjmatrix_graph( const string &kd, int vSize, const TypeOfVer d[], const TypeOfEdge noEdgeFlag); //构造函数构造一个只有结点没有边的图。4个参数的含义:图的类型、结点数、结点值和邻接矩阵中表示结点间没有边的标记(无权图:0,有权图:输入参数定)
adjmatrix_graph( const string &kd, int vSize, int eSize, const TypeOfVer d[], int **e); //构造函数构造一个无权图。5个参数的含义:图的类型、结点数、边数、结点集和边集
adjmatrix_graph( const string &kd, int vSize, int eSize, const TypeOfEdge noEdgeFlag, const TypeOfVer d[], int **e, const TypeOfEdge w[]); //构造函数构造一个有权图。7个参数的含义:图的类型、结点数、边数、无边标记、结点集、边集、权集
bool GraphisEmpty() { return Vers == 0; } //判断图空否
string GetGraphKind(){ return GraphKind; }
bool GetVer(int u, TypeOfVer &data); //取得G中指定顶点的值
int GetFirstAdjVex(int u, int &v); //返回G中指定顶点u的第一个邻接顶点的位序(顶点集)。若顶点在G中没有邻接顶点,则返回-1
int GetNextAdjVex(int u, int v, int &w); //返回G中指定顶点u的下一个邻接顶点(相对于v)的位序(顶点集)。若顶点在G中没有邻接顶点,则返回-1
bool PutVer(int u, TypeOfVer data); //对G中指定顶点赋值
bool InsertVer(const TypeOfVer &data); //往G中添加一个顶点
int LocateVer(TypeOfVer data); //返回G中指定顶点的位置
bool PrintMatrix(); //输出邻接矩阵
int GetVerNum(){ return Vers;} //取得当前顶点数
int GetEdgeNum(){ return Edges;} //取得当前边数
bool Insert_Edge(int u, int v); //无权图插入一条边
bool Insert_Edge(int u, int v, TypeOfEdge w); //有权图插入一条边
bool DeleteVer(const TypeOfVer &data); //往G中删除一个顶点
bool Delete_Edge(int u, int v); //无权图删除一条边
bool Delete_Edge(int u, int v, TypeOfEdge w); //有权图删除一条边
void DFS_Traverse(int u); //DFS遍历(外壳部分)
void BFS_Traverse(int u); //BFS遍历
~adjmatrix_graph(); //析构函数
};
输入说明 :
建图的输入数据格式参见建图的算法说明。
第一行:图的类型
第二行:结点数
第三行:结点集
第四行:边数
第五行:边集
第六行:待删除的顶点的元素值
输出说明 :
第一行:图的类型
第二行:删除前的顶点集
空行
第三行:删除前的邻接矩阵
空行
第四行:删除后的顶点集
空行
第五行:删除后的邻接矩阵
输入范例 :
UDG
6
A B C D E F
6
0 1
0 2
0 3
1 4
2 4
3 5
B
输出范例 :
UDG
A B C D E F0 1 1 1 0 0
1 0 0 0 1 0
1 0 0 0 1 0
1 0 0 0 0 1
0 1 1 0 0 0
0 0 0 1 0 0A C D E F
0 1 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
解题思路:
解题代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <string>
#include <vector>
#include <queue>
#include <sstream>
#include <stack>
#include <map>
#include <ctime>
#include <array>
#include <set>
using namespace std;
template <class TypeOfVer, class TypeOfEdge>//节点数值,边数值
class adjmatrix_graph {
private:
int Vers; //顶点(节点)数
int Edges; //边数
//存放邻接矩阵(TypeOfEdge表示顶点关系类型。对于无权图,用1或0,表示相邻否;对于带权图,则为权值类型)
vector<vector<TypeOfEdge> >edge;//邻接矩阵
TypeOfEdge noEdge; //邻接矩阵中的∞的表示值
vector<TypeOfVer> ver; //存放结点值
string GraphKind; //图的种类标志
bool have_dir = false, have_w = false;//图类型参数
//bool DFS(int u, int& num, int visited[]); //DFS遍历(递归部分)
public:
adjmatrix_graph()
{
Vers = 0;
Edges = 0;
edge.clear();
ver.clear();
noEdge = 0;
}
~adjmatrix_graph()
{
;
}
//全自动输入
bool Auto_input(bool need_emp)
{
//DG(有向图), DN(有向网), UDG(无向图), UDN(无向网)
/*第一行:图的类型 DN UDN
第二行:结点数
第三行:结点集
第四行:无边标记
第五行:边数
第六行:边集
第七行:权集*/
/*第一行:图的类型 DG UDG
第二行:结点数
第三行:结点集
第四行:边数
第五行:边集*/
cin >> GraphKind;//图的类型
cin >> Vers;//结点数
ver.resize(Vers);
for (int i = 0; i < Vers; i++)//结点集
cin >> ver[i];
if (need_emp)
cin >> noEdge;//无边标记
vector<TypeOfEdge> line;//邻接矩阵初始化
for (int j = 0; j < Vers; j++)
{
for (int i = 0; i < Vers; i++)
line.push_back(noEdge);
edge.push_back(line);
}
cin >> Edges;//边数
vector<int> x_p, y_p, w_p;
for (int i = 0; i < Edges; i++)
{
int c_x, c_y;
cin >> c_x >> c_y;
x_p.push_back(c_x);
y_p.push_back(c_y);
}
//图的类型识别
if (GraphKind == "DG")//DG(有向图)
have_dir = true, have_w = false;
if (GraphKind == "DN")//DN(有向网)
have_dir = true, have_w = true;
if (GraphKind == "UDG")//UDG(无向图)
have_dir = false, have_w = false;
if (GraphKind == "UDN")//UDN(无向网)
have_dir = false, have_w = true;
if(have_w)
for (int i = 0; i < Edges; i++)
{
int c_w;
cin >> c_w;
w_p.push_back(c_w);
}
for (int i = 0; i < Edges; i++)
{
if (have_dir == false)//无向图操作
{
if (have_w == true)//带权值的网的操作
edge[x_p[i]][y_p[i]] = edge[y_p[i]][x_p[i]] = w_p[i];
else//无权值操作
edge[x_p[i]][y_p[i]] = edge[y_p[i]][x_p[i]] = 1;
}
else
{
if (have_w == true)//带权值的网的操作
edge[x_p[i]][y_p[i]] = w_p[i];
else//无权值操作
edge[x_p[i]][y_p[i]] = 1;
}
}
return 1;
}
//输出邻接矩阵
bool PrintMatrix()
{
int i, j;
for (i = 0; i < Vers; i++)
{
for (j = 0; j < Vers-1; j++)
cout << edge[i][j] << " ";
cout << edge[i][j]<<" ";
cout << endl;
}
return 1;
}
//判断图空否
bool GraphisEmpty(void)
{
return Vers == 0;
}
//图的类型
string GetGraphKind(void)
{
return GraphKind;
}
//获得顶点集
vector<TypeOfVer> GetGraph_Point(void)
{
return ver;
}
//往G中添加一个顶点
bool InsertVer(const TypeOfVer& data)
{
ver.push_back(data);
vector<TypeOfEdge> line;//邻接矩阵一行
for (int j = 0; j < Vers; j++)
{
edge[j].push_back(noEdge);
}
for (int j = 0; j <= Vers; j++)
{
line.push_back(noEdge);
}
edge.push_back(line);
Vers++;
return 1;
}
//返回G中指定顶点的位置
int LocateVer(TypeOfVer data)
{
int i = 0;
for (i = 0; i < ver.size(); i++)
if (ver[i] == data)
return i;
return -1;
}
//删除一个顶点
bool Delete_Point(const TypeOfVer& data)
{
int i, j;
for (i = 0; i < Vers; i++)
if (ver[i] == data)
{
ver.erase(ver.begin() + i);
break;
}
if (i == Vers)//没有找到
return 0;
Vers--;
edge.erase(edge.begin() + i);
for (j = 0; j < Vers; j++)
edge[j].erase(edge[j].begin() + i);
return 1;
}
//+++++++++++++++++++==分割线=====+++++++++++++++++++++++++++++
bool GetVer(int u, TypeOfVer& data) //取得G中指定顶点的值
{
return 1;
}
//返回G中指定顶点u的第一个邻接顶点的位序(顶点集)。若顶点在G中没有邻接顶点,则返回-1
int GetFirstAdjVex(int u, int& v)
{
int p;
return p;
}
//返回G中指定顶点u的下一个邻接顶点(相对于v)的位序(顶点集)。若顶点在G中没有邻接顶点,则返回-1
int GetNextAdjVex(int u, int v, int& w)
{
return -1;
}
//对G中指定顶点赋值
bool PutVer(int u, TypeOfVer data)
{
return 1;
}
//取得当前顶点数
int GetVerNum()
{
return Vers;
}
//取得当前边数
int GetEdgeNum()
{
return Edges;
}
//无权图插入一条边
bool Insert_Edge(int u, int v)
{
return 1;
}
//有权图插入一条边
bool Insert_Edge(int u, int v, TypeOfEdge w)
{
return 1;
}
//无权图删除一条边
bool Delete_Edge(int u, int v)
{
return 1;
}
//有权图删除一条边
bool Delete_Edge(int u, int v, TypeOfEdge w)
{
return 0;
}
//void DFS_Traverse(int u); //DFS遍历(外壳部分)
//void BFS_Traverse(int u); //BFS遍历
};
int main()
{
int i;
adjmatrix_graph<char, int> a;
a.Auto_input(0);
cout << a.GetGraphKind() << endl;
vector<char> ans;
ans = a.GetGraph_Point();
for (i = 0; i < ans.size() - 1; i++)
cout << ans[i] << " ";
cout << ans[i] << endl;
cout << endl;
a.PrintMatrix();
char del_n;
cin >> del_n;
a.Delete_Point(del_n);
/* char new_n;
cin >> new_n;
a.InsertVer(new_n);
cout << endl;*/
/*ans = a.GetGraph_Point();*/
cout << endl;
ans = a.GetGraph_Point();
for (i = 0; i < ans.size() - 1; i++)
cout << ans[i] << " ";
cout << ans[i] << endl;
cout << endl;
a.PrintMatrix();
return 0;
}