【邻接矩阵】58 邻接矩阵:删除一个顶点

问题描述 :

目的:使用C++模板设计并逐步完善图的邻接矩阵抽象数据类型(ADT)。

内容:

(1)请参照图的邻接矩阵模板类原型,设计并逐步完善图的邻接矩阵ADT。(由于该环境目前仅支持单文件的编译,故将所有内容都集中在一个源文件内。在实际的设计中,推荐将抽象类及对应的派生类分别放在单独的头文件中。)

(2)设计并实现一个算法,在已存在的图中查找指定元素值的结点,如查找成功,则删除之;否则,返回。图的存储结构采用邻接矩阵。将其加入到ADT中。

 

函数原型:

bool DeleteVer(const TypeOfVer &data); //往G中删除一个顶点

 

辅助函数原型:

int LocateVer(TypeOfVer data); //返回G中指定顶点的位置 

 

注意:DG(有向图), DN(有向网), UDG(无向图), UDN(无向网)

 

图的邻接矩阵模板类原型参考如下:

 

template <class TypeOfVer, class TypeOfEdge>

class adjmatrix_graph{

    private:

       int Vers;        //顶点数 

       int Edges;       //边数 

       TypeOfEdge **edge;  //存放邻接矩阵(TypeOfEdge表示顶点关系类型。对于无权图,用1或0,表示相邻否;对于带权图,则为权值类型) 

       TypeOfVer *ver;    //存放结点值 

       TypeOfEdge noEdge;  //邻接矩阵中的∞的表示值

       string GraphKind;   //图的种类标志 

        

       bool DFS(int u, int &num, int visited[]); //DFS遍历(递归部分)

 

    public:

       adjmatrix_graph( const string &kd, int vSize, const TypeOfVer d[], const TypeOfEdge noEdgeFlag); //构造函数构造一个只有结点没有边的图。4个参数的含义:图的类型、结点数、结点值和邻接矩阵中表示结点间没有边的标记(无权图:0,有权图:输入参数定) 

       adjmatrix_graph( const string &kd, int vSize, int eSize, const TypeOfVer d[], int **e); //构造函数构造一个无权图。5个参数的含义:图的类型、结点数、边数、结点集和边集 

       adjmatrix_graph( const string &kd, int vSize, int eSize, const TypeOfEdge noEdgeFlag, const TypeOfVer d[], int **e, const TypeOfEdge w[]); //构造函数构造一个有权图。7个参数的含义:图的类型、结点数、边数、无边标记、结点集、边集、权集

       bool GraphisEmpty() { return Vers == 0; }  //判断图空否

       string GetGraphKind(){ return GraphKind; }

       bool GetVer(int u, TypeOfVer &data); //取得G中指定顶点的值 

       int GetFirstAdjVex(int u, int &v); //返回G中指定顶点u的第一个邻接顶点的位序(顶点集)。若顶点在G中没有邻接顶点,则返回-1 

       int GetNextAdjVex(int u, int v, int &w); //返回G中指定顶点u的下一个邻接顶点(相对于v)的位序(顶点集)。若顶点在G中没有邻接顶点,则返回-1

       bool PutVer(int u, TypeOfVer data); //对G中指定顶点赋值 

       bool InsertVer(const TypeOfVer &data); //往G中添加一个顶点 

       int LocateVer(TypeOfVer data); //返回G中指定顶点的位置 

       bool PrintMatrix();  //输出邻接矩阵 

       int GetVerNum(){ return Vers;}    //取得当前顶点数 

       int GetEdgeNum(){ return Edges;}  //取得当前边数 

       bool Insert_Edge(int u, int v); //无权图插入一条边

       bool Insert_Edge(int u, int v, TypeOfEdge w); //有权图插入一条边

       bool DeleteVer(const TypeOfVer &data); //往G中删除一个顶点

       bool Delete_Edge(int u, int v); //无权图删除一条边 

       bool Delete_Edge(int u, int v, TypeOfEdge w); //有权图删除一条边 

       void DFS_Traverse(int u); //DFS遍历(外壳部分)

       void BFS_Traverse(int u); //BFS遍历

       ~adjmatrix_graph(); //析构函数 

};

 

输入说明 :

建图的输入数据格式参见建图的算法说明。

 

第一行:图的类型

第二行:结点数

第三行:结点集

第四行:边数

第五行:边集

第六行:待删除的顶点的元素值

 

输出说明 :

第一行:图的类型

第二行:删除前的顶点集

               空行

第三行:删除前的邻接矩阵

               空行

第四行:删除后的顶点集

               空行

第五行:删除后的邻接矩阵

 

输入范例 :

UDG
6
A B C D E F
6
0 1
0 2
0 3
1 4
2 4
3 5
B

输出范例 :

UDG
A B C D E F

0 1 1 1 0 0 
1 0 0 0 1 0 
1 0 0 0 1 0 
1 0 0 0 0 1 
0 1 1 0 0 0 
0 0 0 1 0 0 

A C D E F

0 1 1 0 0 
1 0 0 1 0 
1 0 0 0 1 
0 1 0 0 0 
0 0 1 0 0 

解题思路: 

解题代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <string>
#include <vector>
#include <queue>
#include <sstream>
#include <stack>
#include <map>
#include <ctime>
#include <array>
#include <set>
using namespace std;

template <class TypeOfVer, class TypeOfEdge>//节点数值,边数值
class adjmatrix_graph {
private:
    int Vers;        //顶点(节点)数 
    int Edges;       //边数 
    //存放邻接矩阵(TypeOfEdge表示顶点关系类型。对于无权图,用1或0,表示相邻否;对于带权图,则为权值类型) 

    vector<vector<TypeOfEdge> >edge;//邻接矩阵
    TypeOfEdge noEdge;  //邻接矩阵中的∞的表示值

    vector<TypeOfVer> ver;    //存放结点值 

    string GraphKind;   //图的种类标志 

    bool have_dir = false, have_w = false;//图类型参数
    //bool DFS(int u, int& num, int visited[]); //DFS遍历(递归部分)
public:
    adjmatrix_graph()
    {
        Vers = 0;
        Edges = 0;
        edge.clear();
        ver.clear();
        noEdge = 0;
    }
    ~adjmatrix_graph()
    {
        ;
    }
    //全自动输入
    bool Auto_input(bool need_emp)
    {
        //DG(有向图), DN(有向网), UDG(无向图), UDN(无向网)
        /*第一行:图的类型  DN UDN
        第二行:结点数
        第三行:结点集
        第四行:无边标记
        第五行:边数
        第六行:边集
        第七行:权集*/

        /*第一行:图的类型  DG UDG
        第二行:结点数 
        第三行:结点集
        第四行:边数
        第五行:边集*/
        cin >> GraphKind;//图的类型 
        cin >> Vers;//结点数
        ver.resize(Vers);
        for (int i = 0; i < Vers; i++)//结点集
            cin >> ver[i];

        if (need_emp)
            cin >> noEdge;//无边标记

        vector<TypeOfEdge> line;//邻接矩阵初始化
        for (int j = 0; j < Vers; j++)
        {
            for (int i = 0; i < Vers; i++)
                line.push_back(noEdge);
            edge.push_back(line);
        }

        cin >> Edges;//边数
        vector<int> x_p, y_p, w_p;
        for (int i = 0; i < Edges; i++)
        {
            int c_x, c_y;
            cin >> c_x >> c_y;
            x_p.push_back(c_x);
            y_p.push_back(c_y);
        }
        //图的类型识别
        
        if (GraphKind == "DG")//DG(有向图)
            have_dir = true, have_w = false;
        if (GraphKind == "DN")//DN(有向网)
            have_dir = true, have_w = true;
        if (GraphKind == "UDG")//UDG(无向图)
            have_dir = false, have_w = false;
        if (GraphKind == "UDN")//UDN(无向网)
            have_dir = false, have_w = true;
        
        if(have_w)
            for (int i = 0; i < Edges; i++)
            {
                int c_w;
                cin >> c_w;
                w_p.push_back(c_w);
            }

        for (int i = 0; i < Edges; i++)
        {
            if (have_dir == false)//无向图操作
            {
                if (have_w == true)//带权值的网的操作
                    edge[x_p[i]][y_p[i]] = edge[y_p[i]][x_p[i]] = w_p[i];
                else//无权值操作
                    edge[x_p[i]][y_p[i]] = edge[y_p[i]][x_p[i]] = 1;
            }
            else
            {
                if (have_w == true)//带权值的网的操作
                    edge[x_p[i]][y_p[i]] = w_p[i];
                else//无权值操作
                    edge[x_p[i]][y_p[i]] = 1;
            }
        }
        return 1;
    }
    //输出邻接矩阵 
    bool PrintMatrix()
    {
        int i, j;
        for (i = 0; i < Vers; i++)
        {
            for (j = 0; j < Vers-1; j++)
                cout << edge[i][j] << " ";
            cout << edge[i][j]<<" ";
            cout << endl;
        }
        return 1;
    }
    //判断图空否
    bool GraphisEmpty(void)
    {
        return Vers == 0;
    }
    //图的类型
    string GetGraphKind(void)
    {
        return GraphKind;
    }
    //获得顶点集
    vector<TypeOfVer> GetGraph_Point(void)
    {
        return ver;
    }
    //往G中添加一个顶点 
    bool InsertVer(const TypeOfVer& data)
    {
        ver.push_back(data);
        vector<TypeOfEdge> line;//邻接矩阵一行
        for (int j = 0; j < Vers; j++)
        {
            edge[j].push_back(noEdge);
        }
        for (int j = 0; j <= Vers; j++)
        {
            line.push_back(noEdge);
        }
        edge.push_back(line);
        Vers++;
        return 1;
    }
    //返回G中指定顶点的位置 
    int LocateVer(TypeOfVer data)
    {
        int i = 0;
        for (i = 0; i < ver.size(); i++)
            if (ver[i] == data)
                return i;
        return -1;
    }
    //删除一个顶点
    bool Delete_Point(const TypeOfVer& data)
    {
        int i, j;
        for (i = 0; i < Vers; i++)
            if (ver[i] == data)
            {
                ver.erase(ver.begin() + i);
                break;
            }
        if (i == Vers)//没有找到
            return 0;
        Vers--;
        edge.erase(edge.begin() + i);
        for (j = 0; j < Vers; j++)
            edge[j].erase(edge[j].begin() + i);
        return 1;
    }
    //+++++++++++++++++++==分割线=====+++++++++++++++++++++++++++++
    bool GetVer(int u, TypeOfVer& data) //取得G中指定顶点的值 
    {
        return 1;
    }
    //返回G中指定顶点u的第一个邻接顶点的位序(顶点集)。若顶点在G中没有邻接顶点,则返回-1 
    int GetFirstAdjVex(int u, int& v)
    {
        int p;
        return p;
    }
    //返回G中指定顶点u的下一个邻接顶点(相对于v)的位序(顶点集)。若顶点在G中没有邻接顶点,则返回-1
    int GetNextAdjVex(int u, int v, int& w)
    {
        return -1;
    }
    //对G中指定顶点赋值 
    bool PutVer(int u, TypeOfVer data)
    {
        return 1;
    }
    
    
    //取得当前顶点数 
    int GetVerNum() 
    { 
        return Vers; 
    }  
    //取得当前边数 
    int GetEdgeNum() 
    { 
        return Edges; 
    }  
    //无权图插入一条边
    bool Insert_Edge(int u, int v)
    {
        return 1;
    }
    //有权图插入一条边
    bool Insert_Edge(int u, int v, TypeOfEdge w)
    {
        return 1;
    }
    
    //无权图删除一条边 
    bool Delete_Edge(int u, int v)
    {
        return 1;
    }
    //有权图删除一条边 
    bool Delete_Edge(int u, int v, TypeOfEdge w)
    {

        return 0;
    }

    //void DFS_Traverse(int u); //DFS遍历(外壳部分)

    //void BFS_Traverse(int u); //BFS遍历

    

};
int main()
{
    int i;
    adjmatrix_graph<char, int> a;
    a.Auto_input(0);
    cout << a.GetGraphKind() << endl;
    vector<char> ans;
    ans = a.GetGraph_Point();
    
    for (i = 0; i < ans.size() - 1; i++)
        cout << ans[i] << " ";
    cout << ans[i] << endl;
    cout << endl;
    a.PrintMatrix();


    char del_n;
    cin >> del_n;
    a.Delete_Point(del_n);

  /*  char new_n;
    cin >> new_n;
    a.InsertVer(new_n);

    cout << endl;*/

    /*ans = a.GetGraph_Point();*/

    cout << endl;
    ans = a.GetGraph_Point();
    for (i = 0; i < ans.size() - 1; i++)
        cout << ans[i] << " ";
    cout << ans[i] << endl;
    cout << endl;
    a.PrintMatrix();

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值