R-CNN算法详解

R-CNN是2014年提出的经典目标检测算法,旨在解决localization和recognition问题。通过select search获取region proposal,使用预训练的AlexNet进行特征提取,再训练SVM分类器和回归器。尽管训练时间长、计算量大,但为后续算法奠定了基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是一篇比较早的Object Detection算法,发表在2014年的CVPR,也是R-CNN系列算法的开山之作,网上可以搜到很多相关的博客讲解,本篇博文没有按论文顺序来讲述,而是结合自己经验来看这个算法,希望给初学者一个直观的感受,细节方面不需要太纠结,因为很多部分在后来的算法中都改进了。

论文:Rich feature hierarchies for accurate object detection and semantic segmentation

论文链接

一、解决的问题

本文主要讲R-CNN(Regions with CNN features)这个算法,该算法是用来做object detection的经典算法,2014年提出。object detection的问题简单讲就是两方面:localization和recognition,即知道object在哪,以及这个object是什么。

R-CNN在pascal VOC 2012数据集上取得了mAP 53.3%的成绩,在当时已经很不错了。

二、算法简述

本文数据集采用pascal VOC,这个数据集的object一共有20个类别。首先用select search方法在每张图像上选取约2000个region proposal,region proposal就是object有

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值