YOLO(You Only Look Once)算法详解

这篇博客主要介绍下YOLO v1算法(CVPR2016的文章)。YOLO是目前比较流行的object detection算法,速度快且结构简单,其他的object detection算法如faster RCNN,SSD相信大家也不陌生,以后有机会再介绍。另外提一下,这里算法部分介绍的是YOLO的第一个版本,而现在YOLO的官网上已经有YOLO v2的实现了,这个后续再介绍。

论文名称:You only look once unified real-time object detection
论文链接

1、YOLO v1 算法内容

作者在YOLO算法中把物体检测(object detection)问题处理成回归问题,用一个卷积神经网络结构就可以从输入图像直接预测bounding box和类别概率。

YOLO算法的优点:1、YOLO的速度非常快。在Titan X GPU上的速度是45 fps(frames per second),加速版的YOLO差不多是150fps。2、YOLO是基于图像的全局信息进行预测的。这一点和基于sliding window以及region proposal等检测算法不一样。与Fast R-CNN相比,YOLO在误检测(将背景检测为物体)方面的错误率能降低一半多。3、YOLO可以学到物体的generalizable representations。可以理解为泛化能力强。4、准确率高,有实验证明。

算法结构图如Fig1:结构上主要的特点就是 unified detection,不再是原来许多步骤组成的物体检测,这使得模型的运行速度快,可以直接学习图像的全局信息且可以end-to-end训练

这里写图片描述

算法首先把输入图像划分成S*S的格子,然后对每个格子都预测B个bounding boxes,每个bounding box都包含5个预测值:x,y,w,h和confidence。x,y就是bounding box的中心坐标,与grid cell对齐(即相对于当前grid cell的偏移值),使得范围变成0到1;w和h进行归一化(分别除以图像的w和h,这样最后的w和h就在0到1范围)。原文如下:

评论 145
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值