Group Normalization算法笔记

Group Normalization(GN)是对Batch Normalization的改进,解决batch size小导致的准确率问题。GN通过将通道分组计算均值和方差,使其独立于batch size,适用于batch size较小的场景,如目标检测和视频处理。尽管在训练时表现优于BN,但验证时可能稍逊一筹。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文:Group Normalization
论文链接:https://arxiv.org/abs/1803.08494

Group Normalization(GN)是针对Batch Normalization(BN)在batch size较小时错误率较高而提出的改进算法,因为BN层的计算结果依赖当前batch的数据,当batch size较小时(比如2、4这样),该batch数据的均值和方差的代表性较差,因此对最后的结果影响也较大。如图Figure1所示,随着batch size越来越小,BN层所计算的统计信息的可靠性越来越差,这样就容易导致最后错误率的上升;而在batch size较大时则没有明显的差别。虽然在分类算法中一般的GPU显存都能cover住较大的batch设置,但是在目标检测、分割以及视频相关的算法中,由于输入图像较大、维度多样以及算法本身原因等,batch size一般都设置比较小,所以GN对于这种类型算法的改进应该比较明显。
这里写图片描述

因此Group Normalization(GN)的思想并不复杂,简单讲就是要使归一化操作的计算不依赖batch size的大小,原文的这段话概括得非常好:GN divides the channels into groups and computes within each group

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值