caffe
文章平均质量分 88
code_Rocker
machine learning,action/gesture recognition.
Be a Fighter
展开
-
caffe将用训练好的caffemodel和train_val.prototxt文件分类新的一张图片-下篇--caffe学习(7)
接上篇caffe将用训练好的caffemodel和train_val.prototxt文件分类新的一张图片-上篇 得到deploy.prototxt文件之后,我们可以自己编写python代码实现对单个图片的分类预测,先贴代码再分析:#coding=utf-8import caffeimport numpy as nproot=root='/home/dltest/caffe/' #根目录原创 2017-01-04 12:31:46 · 1916 阅读 · 0 评论 -
caffe中loss函数代码分析--caffe学习(16)
http://blog.csdn.net/u014381600/article/details/54341317接上篇:caffe中样本的label一定要从序号0开始标注–caffe学习(15) A: 1:数学上来说,损失函数loss值和label从0开始还是从1或者100开始是没有直接联系的,以欧式距离损失函数(Euclidean Loss)为例子: 2:铰链损失函数(Hinge Los原创 2017-01-11 09:34:32 · 6320 阅读 · 0 评论 -
caffe的python接口:绘制loss和accuracy曲线
转载自:http://www.cnblogs.com/denny402/p/5686067.html使用python接口来运行caffe程序,主要的原因是python非常容易可视化。所以不推荐大家在命令行下面运行python程序。如果非要在命令行下面运行,还不如直接用 c++算了。推荐使用jupyter notebook,spyder等工具来运行python代码,这样才和它的可视化完美结合起来。转载 2017-02-17 10:53:06 · 1083 阅读 · 0 评论 -
Ubuntu安装caffe借助anaconda
本人是在ubuntu14.04下安装caffe,CUDA 版本为7.5,python选用的是anaconda集成安装包,下载地址:https://www.baidu.com/link?url=i_fZ0p8nOAj6OshGvk3FeHEdP-XYpL_V9KcIxItGwmWYdFs7ipjimnUXuKOlDU2R&wd=&eqid=bf5e1a670008837c00000003579cb2f原创 2016-07-30 22:25:16 · 6750 阅读 · 0 评论 -
caffe增加自己的layer实战(下)--caffe学习(12)
接上篇 caffe增加自己的layer实战(中)–caffe学习(11) 先放出完整的修改后的video_data_layers.cpp:#include <fstream>#include <iostream>#include <string>#include <utility>#include <vector>#include "caffe/data_layers.hpp"#inc原创 2017-01-09 11:24:24 · 2765 阅读 · 0 评论 -
caffe中RGB图像三通道卷积过程学习推导
idea来源于自己的想法,之前在github看过大神贾杨清的推导slider,caffe中如果计算卷积,加上自己最近有个很小的疑惑,输入的image一般是RGB三通道的彩色图片,但是我们在定义卷积层时一般只指定了一个kernel_size参数。像这样: 本文首先学习一下贾杨清大神的slider推导过程,然后从caffe源码里面去找从定义caffe的kernel_size参数开始以后干的事,然后原创 2017-03-08 22:13:07 · 20011 阅读 · 4 评论 -
sublime打造caffe开发环境,prototxt文件语法高亮
给sublime添加python插件让开发caffe时更方便是很简单的,但是caffe开发时还需要常常和 各种经常和各种train.prototxt文件打交道,怎么让sublime在我们编辑caffe的prototxt文件时提供语法高亮效果呢?1:control+shift+P键: 然后输入install,选择install package 2:然后键入选择这个安装包 这样我们打开pr原创 2017-01-14 15:56:14 · 2406 阅读 · 0 评论 -
symbol lookup error: /home/caffe/anaconda/lib/libreadline.so.6: undefined symbol: PC
symbol lookup error: /home/caffe/anaconda/lib/libreadline.so.6: undefined symbol: PC – caffe安装错误解决办法:先执行命令locate libreadline.so.6 然后会发现比如系统目录下:/lib/x86_64-linux-gnu/libreadline.so.6会有这个文件然后cp /lib/x8原创 2017-03-22 00:29:46 · 5717 阅读 · 1 评论 -
神经网络优化算法如何选择Adam,SGD
之前在tensorflow上和caffe上都折腾过CNN用来做视频处理,在学习tensorflow例子的时候代码里面给的优化方案默认很多情况下都是直接用的AdamOptimizer优化算法,如下:optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize(cost)但是在使用caffe时solver里面一般都用的SGD+momentum原创 2017-06-05 15:05:20 · 32932 阅读 · 0 评论 -
caffe/tensorflow中样本的label一定要从序号0开始标注--caffe学习(15)
这两天在跑实验时思考一个问题,为什么在别的帖子里面和自己之前的实验中,对于data的标注大家都默认使用的是从0开始标注样本,之前的一次finetune中,自己的样本从34567开始标注的时候一直没有开始收敛loss,但是后来在另一个帖子中看到标注必须要从0开始,后来自己改成01234之后loss也收敛了,因此开贴记录并验证。这是序号为01234的test.txt文件内容: 先看标注从0开始的样原创 2017-01-10 23:40:40 · 11725 阅读 · 2 评论 -
caffe安装错误总结(cuda,cudnn,ffmpeg错误,cudnn.hpp:8:34)
最近安装了caffe的Linux版本。1.操作系统最好使用ubuntu desktop 14.04 64位。2.剩下的就按caffe官网安装caffe的方法安装就行了,一路顺畅。顺便提醒一下,caffe没有说要安装opencv,这个是需要安装的,可以在所以安装完毕后,安装opencv。3.opencv安装,4.1ffmpeg:sudo add-apt-repository ppa:kirillshk原创 2017-01-05 10:40:15 · 7939 阅读 · 0 评论 -
caffe中train_val.prototxt文件和deploy.prototxt文件区别和转换--caffe学习(14)
先放出二者的完整例子文件,然后分析: train_val.prototxt文件如下:name: "CaffeNet"layer {name: "data"type: "Data"top: "data"top: "label"include {phase: TRAIN}transform_param {mirror: truecrop_size: 227mean_file:原创 2017-01-10 21:43:56 · 7549 阅读 · 5 评论 -
caffe的solver参数调优--caffe学习(17)
先看在python里面写solver文件需要有哪些参数: 其中主要的几个参数区别test_interval,test_iter,max_iter,在这里已经介绍过caffe的solver文件参数详解–caffe学习(2) 接下来看自己跑实验室这些参数应该怎么设置,这里都以SGD为例: [1] L. Bottou. Stochastic Gradient Descent Tricks. Neura原创 2017-01-14 20:42:37 · 5280 阅读 · 0 评论 -
caffe增加自己的layer实战(上)--caffe学习(10)
github上如何增加自己的caffe layer:这里写链接内容 摘要如下:Here's roughly the process I follow. Add a class declaration for your layer to the appropriate one of common_layers.hpp, data_layers.hpp, loss_layers.hpp, ne原创 2017-01-09 10:52:16 · 2314 阅读 · 0 评论 -
caffe将网络模型由protot转换成变成网络结构模型图--caffe学习(5)
首先需要安装graphviz,再安装pydot 在conda命令下:conda install graphvizconda install pydotpython/draw_net.py这个文件,就是caffe官方提供的用来绘制网络模型的。也就是将网络模型由prototxt变成一张图片。 安装好了,就可以调用脚本来绘制图片了 draw_net.py执行的时候带三个参数第一个参数:网络模型的p原创 2017-01-02 23:19:58 · 2020 阅读 · 0 评论 -
caffe用python设置网络的Convolution层Pooling层和LRN--caffe学习(4))
1:卷积层,是卷积神经网络(CNN)的核心层。 层类型:Convolution lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr。如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学习率。一般偏置项的学习率是权值学习率的两倍。 在后面的convolution_param中,我们可以设定卷积层的特有参数。原创 2017-01-02 01:05:31 · 2235 阅读 · 0 评论 -
caffe用python加载数据,包含各类数据类型(LMDB,image,HDF5等共五种全部格式))--caffe学习(3)
caffe的数据层是网络的第一层,也就是data层,今天我们就先介绍一下数据层。 数据层是每个模型的最底层,是模型的入口,不仅提供数据的输入,也提供数据从Blobs转换成别的格式进行保存输出。通常数据的预处理(如减去均值, 放大缩小, 裁剪和镜像等),也在这一层设置参数实现。 数据来源可以来自高效的数据库(如LevelDB和LMDB),也可以直接来自于内存。如果不是很注重效率的话,数据也可来自磁原创 2017-01-02 00:39:39 · 2351 阅读 · 0 评论 -
caffe使用预训练的模型进行finetune--caffe学习(1)
首先明确预训练好的模型和自己的网络结构是有差异的,预训练模型的参数如何跟自己的网络匹配的呢:参考官网教程:http://caffe.berkeleyvision.org/gathered/examples/finetune_flickr_style.html–If we provide the weights argument to the caffe train command, the pret原创 2016-12-30 20:27:20 · 5696 阅读 · 2 评论 -
caffe的solver文件参数详解--caffe学习(2)
solver文件参数:test_interval,test_iter,max_iter的区别:test_interval = 938 #60000/64,测试间隔参数:训练完一次所有的图片,进行一次测试 **#测试间隔就是完成一次完整的train需要的次数,=train_example/train_batch_size,假如有60000个train样本,bs设置为64,test_inter原创 2016-12-30 20:28:47 · 2980 阅读 · 0 评论 -
Vmware虚拟机安装caffe,Ubuntu安装caffe,CPU only版本
Ubuntu安装caffe,CPU only版本(包括Vmware虚拟机安装caffe方法)本人是在VMware虚拟机ubuntu14.04下安装caffe,仅CPU模式, CUDA 版本为7.5。下载地址 特别注意CUDA7.5支持的Linux版本如图在虚拟机下安装caffe的缺点就是不能使用主机的GPU,只能安装CPU only模式,与在双系统使用GPU安装区别在于不用安装CUDA的显卡驱动和原创 2016-07-16 21:50:02 · 3761 阅读 · 1 评论 -
常用网络模型结构LeNet,AlexNET,VGG,BN-inception,ResNet网络模型简介和资料整理--caffe学习(8)
在使用深度神经网络时我们一般推荐使用大牛的组推出的和成功的网络。如最近的google团队推出的BN-inception网络和inception-v3以及微软最新的深度残差网络ResNET。 我们从简单的网络开始介绍,学习理解网络结构是如何发展到今天的,同时本文整理了自己用别人网络结构时别人的网络结构的pre-reain model和prototxt文件的资源。 首先安利caffe zoo大法,可原创 2017-01-08 14:18:41 · 23377 阅读 · 0 评论 -
caffe各个层layer的区别和介绍 Vision Layers,Data Layers, Common Layers--caffe学习(9)
主要有几个大类Vision Layers,Data Layers, Common Layers。 其实caffe官网介绍的已经很仔细了,可以参考中文翻译版本: 由CaffeCN社区志愿者共同翻译的Caffe官网教程,目前已经完成社区预览,现在对外发布。我们在此致谢所有参加此次翻译活动的朋友们! 本文档版权现已贡献给Caffe官方,由CaffeCN社区负责后续维护。 下载地址 百度云: htt原创 2017-01-09 09:44:07 · 1471 阅读 · 0 评论 -
caffe增加自己的layer实战(中)--caffe学习(11)
接上篇: caffe增加自己的layer实战(上)–caffe学习(9) 实现完hpp头文件后就在cpp中实现具体的函数: 目录更改到cpp文件:/caffe/src/caffe/layers 新建文件,命名为:video_data_layers.cpp1:首先包含头文件#include <fstream>#include <iostream>#include <string>#inclu原创 2017-01-09 11:21:02 · 1942 阅读 · 0 评论 -
caffe增加自己的layer教程集合
两篇CSDN教程 这里写链接内容 这里写链接内容caffe中文社区: 这里写链接内容github一篇 这里写链接内容 斯坦福大学大牛的博客 这里写链接内容我自己实现的教程: caffe增加自己的layer实战(上)–caffe学习(10) caffe增加自己的layer实战(中)–caffe学习(11) caffe增加自己的layer实战(下)–caffe学习(12)原创 2017-01-08 16:45:31 · 789 阅读 · 0 评论 -
caffe增加自己的layer实战(下-续1)--caffe学习(13)
接上篇:caffe增加自己的layer实战(下)–caffe学习(12) 构造完函数后我们就要进入proto目录。编辑caffe.proto文件,构造我们的video_data_layer的输入参数。 找到:message LayerParameter { 里面有很多类似: optional PythonParameter python_param = 130; 我们要为自己的video_原创 2017-01-09 15:49:20 · 2700 阅读 · 4 评论 -
迁移学习技巧以及如何更好的finetune 模型
最近在finetune model的时候遇到了点问题,开贴记录一下。也算填自己踩过的坑。 文章参考翻译自cs231n 其实我们常用的直接finetune pre-trained model就属于迁移学习(Transfer Learning)的一种。因为我们很少在训练一个新任务时从零开始训练,一个是由于训练时间限制,另一个时训练样本过大存储空间也不一定允许,如ImageNet数据经济120万张图片原创 2017-05-09 21:45:37 · 21498 阅读 · 4 评论