- 博客(78)
- 资源 (10)
- 收藏
- 关注
原创 Docker 部署国产软件东方通-TongWebV7:Spring Boot 集成与配置指南
本文详细讲解了如何在 Docker 环境中将东方通 TongWeb V7 集成到 Spring Boot 项目中并完成容器化部署的全过程。首先,文章介绍了将 `license.dat` 证书文件嵌入项目的必要性,并通过修改 Spring Boot 的配置文件实现对 TongWeb V7 的支持。接着,提供了 Maven 依赖的调整方案,移除默认的 Tomcat 并引入 TongWeb 的依赖。最后,通过 Docker Compose 配置文件,指导用户如何挂载证书和日志文件,实现便捷管理和项目部署。
2024-10-11 17:12:12 194
原创 诺贝尔物理学奖首次颁给机器学习与神经网络:科技融合的新篇章
2024年诺贝尔物理学奖的颁发引发了全球学术界和科技界的广泛关注与热议。这一奖项首次授予了机器学习与神经网络领域的研究者,这是诺贝尔物理学奖历史上的一个重要里程碑。此举不仅彰显了人工智能在现代科技中的重要作用,也反映了跨学科研究在当今科学发展中的日益突出。
2024-10-11 16:08:36 212
原创 PyCharm 项目解释器切换指南:如何在项目中更换 Python Interpreter
本文详细介绍了在 macOS 系统中,如何通过 PyCharm 更换现有项目的 Python 解释器(Interpreter)。首先,用户可以通过 PyCharm 的 Settings 菜单进入项目设置,选择项目对应的 Python Interpreter。接着,文章介绍了如何通过 Add Interpreter 功能,选择现有的 Conda 环境或创建新的环境。在创建新环境时,用户可以自定义环境名称并选择所需的 Python 版本。
2024-10-10 18:18:43 443
原创 Python 源码编译安装详解:跨平台指南及完整步骤解析
本文详细介绍了如何在不同操作系统(Ubuntu/Debian、CentOS/RHEL、macOS)上,从源码编译并安装 Python 的完整过程。首先,文章提供了各平台上所需的依赖工具和库的安装步骤。然后,讲解了如何下载 Python 官方源码包,解压后进行配置和编译,并使用 `altinstall` 避免覆盖系统默认的 Python 版本。最后,文章通过版本验证确保安装成功。此指南适合需要在多平台环境下定制安装 Python 的开发者和系统管理员参考与实践。
2024-10-10 17:59:43 349
原创 SCP 文件传输实战:通过 SSH 实现文件高效上传与下载
本文详细介绍了如何使用 `scp` 命令,通过 SSH 实现文件在本地与远程服务器或容器之间的上传、下载和目录同步操作。`scp` 是一种基于 SSH 协议的文件传输工具,默认端口为 22,但用户可以根据需求自定义端口。文章提供了上传、下载和目录复制的命令示例,帮助用户快速掌握 `scp` 的基本用法。同时,还介绍了如何灵活设置端口,确保在不同网络环境下实现文件高效传输。适合开发者和系统管理员进行文件传输操作的参考指南。
2024-10-09 11:24:35 177
原创 Docker 环境下 GPU 监控实战:使用 Prometheus 实现 DCGM Exporter 部署与 GPU 性能监控
本文介绍了如何在 Docker 环境下,通过 Prometheus 和 DCGM Exporter 实现对 GPU 资源的监控。文章首先展示了如何使用 `nvidia-smi` 查看 GPU 信息,并提供了通过 Docker run 和 Docker Compose 部署 DCGM Exporter 的详细步骤。接着,文章还解决了部署过程中可能遇到的 NVML 初始化错误,指导用户安装 NVIDIA 容器工具包,确保 GPU 监控顺利进行。最后,用户可以通过 Prometheus 配置抓取 GPU 性能指标
2024-10-09 10:49:44 864
原创 AI工具的力量:人们最喜欢的AI工具及其实际影响
人工智能(AI)正在以飞快的速度改变我们的生活方式,从工作到娱乐,各行各业都逐渐依赖于AI工具的帮助。不同于科幻电影中的冷冰冰的AI助手,今天的AI工具正通过简单易用的设计和强大的功能影响着人们的日常生活。那么,人们最喜欢的AI工具是什么?这些工具又对我们的生活产生了怎样的影响呢?让我们一探究竟。
2024-10-08 15:22:01 716
原创 Docker 环境下 MinIO 监控实战:通过 Prometheus 实现集群与桶级别性能监控
本文详细介绍了如何在 Docker 环境下,通过 Prometheus 实现 MinIO 集群与桶级别的性能监控。首先,使用 MinIO 客户端 `mc` 生成 Prometheus 的监控配置和认证令牌。接着,通过配置 Prometheus 的 `prometheus.yml` 文件,分别从 MinIO 服务中收集集群级和桶级别的指标数据。文章提供了具体的 `scrape_configs` 配置示例,帮助用户轻松拉取 MinIO 的监控数据。
2024-10-08 11:02:01 382
原创 Docker 环境下 Nginx 监控实战:使用 Prometheus 实现 Nginx 性能监控的完整部署指南
本文详细介绍了如何在 Docker 环境下,通过配置 Nginx 的 `stub_status` 模块,并结合 Prometheus 和 Nginx Prometheus Exporter,实现对 Nginx 服务的性能监控。文章首先讲解如何确认 Nginx 是否已启用 `with-http_stub_status_module` 模块,随后通过修改 Nginx 配置文件,设置监控访问端点。
2024-10-08 10:28:06 1494
原创 Docker 环境下 PostgreSQL 监控实战:从 Exporter 到 Prometheus 的部署详解
本文详细介绍了如何使用 Docker 部署并监控 PostgreSQL 数据库。通过创建专用的 PostgreSQL Exporter 账号、配置 Docker 容器,以及使用 Prometheus 获取监控数据,用户可以轻松实现对 PostgreSQL 服务的性能监控。文章提供了 Docker Compose 的完整配置,并讲解了如何通过 `pg_query.yaml` 文件定制 SQL 查询监控。
2024-10-07 23:02:38 920
原创 Docker 部署 Redis 监控系统实战:Redis Exporter 与 Prometheus 完整配置指南
本文详细介绍了如何通过 Docker 快速部署 Redis Exporter 并结合 Prometheus 实现 Redis 单节点的性能监控。首先,文章简述了 Redis 缓存的节点架构,随后提供了通过 Docker Compose 部署 Redis Exporter 的完整步骤,包括环境变量配置及密码文件的权限设置。配置完成后,Prometheus 将通过 Redis Exporter 抓取 Redis 相关的监控数据,文章还涵盖了 Prometheus 的配置文件示例及其标签调整方法。
2024-10-07 22:42:50 681
原创 Docker 环境下多节点服务器监控实战:从 Prometheus 到 Grafana 的完整部署指南
本文介绍了如何通过 Docker 快速部署 Prometheus 和 Grafana,实现对多个服务器节点的监控。在实战过程中,分别在三个节点上部署 node-exporter,并在第三个节点上集成 Prometheus 和 Grafana,完成对服务器性能的实时监控。文章提供了详细的 Docker Compose 配置文件,并对 Prometheus 进行优化配置,确保节点数据的精准采集与展示。最后,用户可以通过访问 Grafana 来实现可视化的监控体验。
2024-10-06 21:30:11 851
原创 Docker 部署 Prometheus+Grafana 监控系统快速指南
本文详细介绍了通过 Docker 和 Docker Compose 快速部署 Prometheus 和 Grafana 监控系统的流程。使用 Docker 将 node-exporter、Prometheus 和 Grafana 集成在同一网络中,实现对主机和服务的高效性能监控。
2024-10-06 21:09:28 769
原创 Docker 启动 Neo4j:详细配置指南和浏览器访问
这篇文章详细介绍了如何使用 Docker Compose 启动 Neo4j 数据库,包括 `docker-compose.yml` 文件的完整配置和相关说明。文章为读者提供了从配置环境变量到设置端口映射的完整流程,使 Neo4j 容器能够通过浏览器访问。本教程简单易懂,并包含浏览器访问的图示,方便初学者轻松上手 Neo4j 的安装和开发配置。同时,文章也提供了一些开发和生产环境下的注意事项,帮助读者更好地使用和管理 Neo4j 数据库容器。
2024-10-05 20:49:35 639
原创 Nginx 配置 MinIO 访问指南:从单机到集群的最佳实践
本文详细介绍了如何通过 Nginx 配置来访问和管理 MinIO 存储服务,涵盖了单机和集群两种部署模式的配置方法。在单机配置部分,您将学习如何通过 Nginx 代理将请求转发至 MinIO 实例,实现存储桶的访问。在集群配置部分,本文展示了如何在多个 MinIO 实例和控制台之间进行负载均衡,确保高可用性和可扩展性。文章包含了详尽的 Nginx 配置示例和注释,帮助读者快速掌握 MinIO 与 Nginx 集成的核心技术。
2024-10-05 20:26:04 450
原创 MinIO 客户端 mc 访问与管理:从安装到权限设置的全方位指南
本文详细介绍了如何使用 MinIO 客户端 `mc` 进行访问和管理 MinIO 存储服务。通过从安装 `mc` 客户端开始,涵盖了如何在不同操作系统中安装 MinIO 客户端,以及如何使用 `mc` 命令添加存储服务、创建存储桶、查看集群信息等操作。此外,文章还介绍了管理员命令以及如何设置存储桶访问策略,包括自定义、私有、公开、下载和上传权限等。无论是初学者还是管理员,都能通过此指南轻松掌握 MinIO 的访问和管理技巧。
2024-10-04 23:33:11 562
原创 PostgreSQL 创建账号与数据库:从连接到权限配置的完整指南
本文详细讲解了如何在 PostgreSQL 数据库中创建账号和数据库,并为该账号配置相关权限的完整过程。通过使用 psql 连接数据库,创建用户和数据库,以及授予数据库访问权限,用户可以轻松完成 PostgreSQL 的账号和数据库管理。文章还介绍了如何使用新账号登录数据库并运行 SQL 文件进行数据操作,提供了从连接、创建、授权到执行 SQL 的一站式操作指南,适用于数据库初学者和管理员。
2024-10-04 23:03:27 753
原创 Docker 启动 PostgreSQL 主从架构:实现数据同步的高效部署指南
本文详细介绍了如何使用 Docker 和 Docker Compose 部署 PostgreSQL 主从架构,实现数据的高效同步。通过网络创建、配置 Docker Compose 文件、设置主从库以及数据同步测试,用户可以轻松搭建高可用的 PostgreSQL 主从集群。文章还包含详细的环境配置、命令执行以及同步测试的示例,确保从主库创建的数据能够实时同步到从库,为构建高可用的数据库环境提供了完整的部署流程和操作指南。
2024-10-03 22:59:40 967
原创 Prompt 初级版:构建高效对话的基础指南
本文介绍了提示词的基础概念与不同类型,帮助用户更好地理解如何在对话中构建有效的提示。通过标准提示、角色提示、范例提示、多范例提示、组合提示等多种提示形式,用户可以根据需求设计出适合的对话内容。规范化提示更是总结了构建提示词的重要组成部分,包括角色、指令、问题、上下文等元素。通过本文的介绍,读者能够掌握提示词的基本结构与应用,为提升对话质量和生成更加准确的内容提供有力支持。
2024-10-03 22:46:37 907
原创 Docker 安装与配置单机多磁盘 MinIO:高效存储解决方案
本文详述如何通过 Docker Compose 部署单机多磁盘的 MinIO 存储解决方案。首先,创建一个独立的 Docker 网络,接着通过 `docker-compose.minio.yml` 配置文件实现多磁盘的挂载,确保数据分布在不同磁盘上,提供更高效的存储性能和可靠性。配置 MinIO 管理控制台、API 服务端口以及管理员账户密码,最终用户可通过控制台管理存储。此方案不仅简单易用,还能在单机环境下实现多磁盘数据管理,适用于需要高效存储的开发与测试场景。
2024-10-02 23:13:39 830
原创 Docker Compose 部署大模型GPU集群:高效分配与管理算力资源
本文详细介绍了如何使用 Docker Compose 部署大模型所需的 GPU 算力资源,提供从编写 `Dockerfile` 到 GPU 分配的完整流程。通过 `docker-compose` 文件,您可以指定 GPU 资源,灵活控制设备数量或指定特定的 GPU 使用。无论是通过 `count` 参数分配 GPU 数量,还是使用 `device_ids` 映射具体的 GPU,本指南都涵盖了相关的配置示例,确保高效管理和使用多GPU环境。
2024-10-02 22:59:01 2269
原创 Docker 安装 Citus 单节点集群:全面指南与详细操作
本文详细介绍了如何使用 Docker 安装 Citus 单节点集群,并为其配置多个工作节点与协调器。通过具体的服务器资源表、部署示意图,以及 `docker-compose` 脚本,逐步指导读者如何创建 Docker 网络、配置 PostgreSQL 的 `postgresql.conf` 和 `pg_hba.conf`,并完成节点的添加与管理。此外,本文还提供了完整的 SQL 命令示例,帮助用户检查节点健康状况、查看节点表信息、创建分布式表和分片管理。无论是初学者还是有经验的开发者,都可以通过本文轻松完成
2024-10-01 21:57:23 759
原创 Prompt 模版解析:诗人角色的创意引导与实践
Prompt 模版作为一种结构化工具,旨在为特定角色——本例中的“诗人”——提供明确的指导和框架。这一模版详尽地描绘了诗人的职责、擅长的诗歌形式以及创作规则,使其能在自动化系统中更加精确地执行任务。诗人角色擅长编写现代诗、七言律诗和五言诗,同时强调内容的健康性和积极向上。通过应用 Prompt 模版,用户可以明确指定诗歌的形式和主题,系统则根据这些参数精心创作出匹配的诗歌。这一模版不仅提升了创作的效率,还维护了作品的文学价值和情感深度,展示了技术与传统诗歌艺术的完美结合。
2024-10-01 17:55:56 867
原创 使用 SSH 连接 Docker 服务器:IntelliJ IDEA 高效配置与操作指南
本文详细介绍了如何在 2375 端口未开放的情况下,通过 SSH 连接 Docker 服务器并在 Idea 中进行开发。通过修改用户权限、生成密钥对以及配置 SSH 访问,用户可以安全地远程操作 Docker 容器。本文还涉及如何在 Idea 中配置 SSH 连接,帮助开发者高效完成与 Docker 的交互和管理。掌握这些步骤,您将能够更加顺畅地进行 Docker 部署和开发工作,提高工作效率并简化操作流程。
2024-09-30 21:40:08 771
原创 Python NumPy 随机数与操作:全面掌握随机生成与分布
本文系统介绍了如何使用 NumPy 生成多种随机数和处理随机操作。通过 `np.random.rand()`、`np.random.randint()` 等函数,能够轻松生成范围不同的随机数,并通过 `np.random.choice()` 实现对已有数据的随机选择与排列。此外,文章还深入探讨了如何生成正态分布和均匀分布的随机数据,并讲解了随机种子的概念及其重要性,确保在需要时能够重现相同的随机序列。NumPy 强大的随机数生成和处理功能在数据分析、机器学习等领域中有着广泛应用。
2024-09-30 13:19:57 1151
原创 Python NumPy 标准数据生成:高效创建与操作数组
本文介绍如何使用 Python 的 NumPy 库高效生成各种标准数据数组,包括全零、全一、指定数值的数组,以及根据现有数组形状快速创建新数组。我们探讨了常用的数组创建方法,如 `np.zeros()`、`np.ones()`、`np.full()` 等,展示了如何使用 `np.arange()` 和 `np.linspace()` 生成规则数据。通过 `np.empty()` 方法可以快速初始化数组,占用更少时间,非常适用于大规模数据的初始化和后续赋值操作。本文为你提供创建高效且灵活的数据数组的完整指南。
2024-09-29 21:37:27 437
原创 Python NumPy 读取与保存数据:高效处理数据文件
本文详细介绍了如何使用 Python 的 NumPy 库读取与保存不同格式的数据。通过 `np.loadtxt` 和 `np.fromstring` 等方法读取 CSV 文件及字符串数据,并利用 `np.savetxt`、`np.save` 和 `np.savez` 将数据保存为文本、二进制或压缩格式。文章还解释了每个函数的关键参数及其作用,帮助你更好地掌握数据处理的基本操作。通过这些操作,你可以实现高效的数据加载与存储,并且能够灵活地选择数据的存储格式,适应不同的项目需求。
2024-09-29 17:10:46 747
原创 Python NumPy 数据清洗:高效处理数据异常与缺失
本文展示了如何利用 Python 的 NumPy 库高效地进行数据清洗,特别是对复杂数据的异常处理与缺失值填补。文章详细介绍了数据清洗中的常见问题,包括数据值缺失、异常值、格式错误及非独立数据,并提供了对应的解决方案。通过具体的学期学生成绩数据示例,演示了如何识别重复学号、处理缺失年龄值、剔除异常分数、填补缺失成绩等。借助 `np.unique`、`np.isnan`、`np.clip` 等 NumPy 方法,实现了对数据的精细化处理。
2024-09-28 17:05:58 918 1
原创 Python NumPy 数据分析:处理复杂数据的高效方法
本文详细介绍了如何使用 Python 和 NumPy 对复杂数据进行高效的数据分析。通过从 [Kaggle](https://www.kaggle.com/) 获取的公开数据集,演示了如何读取 CSV 文件、提取特定日期和字段的数据,并进行数据的统计与分析。本文展示了使用 NumPy 进行数据操作的便捷方式,如通过索引获取指定行列数据,计算累计数值和新增长的总数,还讲解了如何计算比率、平均值、标准差等关键统计数据。文章还包括完整的代码示例,帮助读者轻松上手进行复杂数据的分析任务。
2024-09-28 11:22:17 868
原创 Python NumPy 多维数组形态转换:高效合并与拆解
本文介绍了如何使用 NumPy 对多维数组进行形态转换,合并与拆解操作。通过 `np.newaxis`、`reshape`、`transpose` 等方法,可以灵活地增加或减少数组的维度,实现多维数组的自由转换。在数据分析和机器学习中,列合并和行合并常通过 `np.column_stack`、`np.row_stack`、`vstack` 和 `hstack` 完成。此外,本文还介绍了如何使用 `np.vsplit`、`np.hsplit` 和 `np.split` 对数组进行横向和纵向拆解。
2024-09-27 14:27:53 661
原创 Python NumPy 基础运算:高效处理与分析数据
本文详细介绍了如何使用 Python 的 NumPy 库进行基础数学运算和数据分析。首先,讲解了如何利用 NumPy 进行加减乘除等常规运算,并通过矩阵点积展示了矩阵运算的强大功能。此外,文中还展示了如何计算数组的最大值、最小值、平均值、标准差等统计数据,帮助用户快速分析数据。最后,深入介绍了一些特殊运算符,如 `np.argmax` 和 `np.argmin` 用于查找最大最小值索引,以及 `np.clip` 进行区间截取等操作。NumPy 提供的高效函数库让数据处理变得更加简单、快捷。
2024-09-27 10:19:17 397
原创 Python NumPy 数据筛选:索引、切片与条件筛选全解析
在数据分析中,数据的筛选和处理非常重要,Python 的 NumPy 提供了高效的方法来完成这些任务。本文介绍了如何使用 NumPy 获取单个元素、切片批量获取数据,以及通过布尔条件筛选特定数据。你将学习通过 `array[i]` 和 `array[start:end]` 进行数据访问,了解如何在多维数组中使用索引和条件筛选数据。此外,还会展示如何使用 `np.where()` 根据条件修改数组元素。这些工具能帮助你在数据处理中更灵活、高效地完成筛选和操作。
2024-09-26 15:09:49 877
原创 Python NumPy 基础操作:多维数据处理详解
NumPy 是 Python 进行科学计算与数据处理的基础库,尤其在多维数组的创建、操作与分析方面极为强大。本教程将深入介绍 NumPy 如何创建一维、二维和三维数据,及其在数据添加、合并和维度形态观察中的应用。你将学习到如何利用 `np.array()` 创建数据,使用 `np.concatenate()` 合并不同维度的数据,以及如何使用 `np.vstack()` 和 `np.hstack()` 进行指定方向的合并操作。
2024-09-26 11:24:36 692
原创 Python NumPy 与 List 的性能对决:为何 NumPy 更胜一筹
NumPy 是 Python 科学计算和数据处理的核心工具,尤其在处理大量数值数据时表现出色。相比于 Python 原生列表,NumPy 提供了更高效的内存管理、运算性能以及更丰富的数学函数库。本文通过对 NumPy 数组和 Python 列表的性能、内存管理及运算速度的对比,展示了 NumPy 的显著优势。无论是基于循环的计算,还是使用 `map` 函数,NumPy 的处理速度都比原生列表快数倍,非常适合用于大规模数据处理和复杂的科学计算。掌握 NumPy 能极大提升你的 Python 编程效率。
2024-09-25 11:13:10 778
原创 Python NumPy 安装指南:开启高效数值计算之旅
NumPy 是 Python 科学计算、数据分析和机器学习中的核心工具。它为我们提供了强大的多维数组对象和高效的数值计算功能,包括线性代数、傅里叶变换和随机数生成等。本文详细介绍了如何通过 `pip` 或 `conda` 安装 NumPy,并解释了为什么它在处理大型数据集、数学计算、机器学习模型等场景中不可或缺。如果安装成功,Python 环境将大大提升数据处理的效率。通过简单的安装和配置步骤,轻松为你的 Python 项目添加强大的数值计算能力。
2024-09-25 11:11:37 516
原创 Python 多进程解析:Multiprocessing 高效并行处理的奥秘
在 Python 编程中,多进程(Multiprocessing)是一种提高程序执行效率的重要手段。本文深入解析了多进程的概念与应用,帮助开发者充分利用多核处理器的计算能力。我们从基本的进程创建与启动开始,讲解了如何通过 `Queue` 实现进程间的数据传递,并通过对比多进程与多线程的性能差异,揭示了多进程在处理 CPU 密集型任务时的显著优势。文章还详细介绍了进程池(Pool)的使用方法,包括 `map` 和 `apply_async` 的不同应用场景。
2024-09-24 10:05:02 2498
原创 Python 多线程编程详解:用 Threading 优雅提升程序并发性能
本文深入探讨了 Python 中多线程(Threading)的原理与应用,帮助读者更好地理解多线程在程序优化中的重要性。文章从多线程的基本概念入手,详细讲解了线程的创建与管理、`join` 方法的使用、线程之间的数据共享与同步、以及如何使用 `Queue` 实现线程间的数据传递。通过生动的代码示例,演示了如何在 Python 中有效利用多线程处理 I/O 密集型任务,以及如何通过线程锁(Lock)避免数据竞争问题。
2024-09-24 09:24:24 719
原创 Python 高阶内容:套娃式装饰器巧妙为函数增加功能
装饰器是 Python 中一种非常强大且灵活的工具,能够在不修改函数本身的情况下,为函数增加额外的功能。本文介绍了装饰器的基本概念及应用,通过实例演示如何在函数执行前后添加额外操作,如鉴权、数据验证等,类似“套娃”般层层嵌套。文章还通过代码示例展示了如何定义和使用装饰器,以及如何将装饰器与实际业务逻辑结合,实现灵活的功能扩展。这种设计模式不仅可以提升代码的可读性和可维护性,还可以有效减少代码的冗余。掌握装饰器的用法,将为你的 Python 编程技巧增添更多亮点。
2024-09-23 10:22:25 584
原创 Python 高阶内容:深入理解 yield 生成器的优势与应用
生成器是 Python 中的一种特殊迭代器,能够逐步生成数据项,而不是一次性将所有数据加载到内存中。这种按需生成数据的特性,让生成器在处理大量数据时更为高效。通过 `yield` 关键字,生成器函数可以暂停执行并返回一个值,而不是终止整个函数。这不仅节省内存,还能提高程序性能。生成器特别适合处理大数据集或需要延迟计算的场景,比如文件读取、大量数据的逐项处理等。与普通迭代器相比,生成器代码更简洁,逻辑更清晰。
2024-09-23 09:21:23 848
原创 Python 高阶内容:深拷贝与浅拷贝揭秘复制的“玄学”
在 Python 中,复制操作并不是简单地将对象内容重新创建,而是存在着深拷贝(Deep Copy)和浅拷贝(Shallow Copy)两种方式。浅拷贝只是复制对象本身,不包括内部嵌套的子对象;如果内部对象被修改,原始对象也会受到影响。而深拷贝则是递归地复制对象及其所有子对象,生成一个完全独立的副本,确保原对象和副本之间互不影响。浅拷贝通常通过对象的 `.copy()` 方法或切片操作实现,适用于对象中不包含可变子对象或希望共享子对象的情况。
2024-09-21 09:20:31 815
lrzsz、telnet 和 traceroute 的 rpm 安装包
2024-10-05
一键离线安装部署 Docker Community Edition 版本 docker-ce-24.0.7.tar.gz
2024-10-05
一键安装国产信创C86架构的Docker docker 版本 20.10.24 支持国产 Linux 内核操作系统,比如麒麟等
2024-10-05
阿里巴巴 Java 编码指南,Alibaba Java Coding Guidelines,兼容 Idea 2023.3+
2024-04-09
Alibaba Java Coding Guidelines-2.1.1.rar
2021-11-29
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人