【Paper Review】GAMMA:Gustavson SpMSpM Accelerator

Gamma: Leveraging Gustavson’s Algorithm to Accelerate Sparse Matrix Multiplication, Guowei Zhang Nithya Attaluri Joel S. Emer Daniel Sanchez, ASPLOS '21

1. 问题背景

SpMSpM的应用场景

  • 深度学习(大模型,模型压缩)
  • 线性代数(专用指令集,Tensor Core)
  • 图分析

SpMSpM(稀疏乘稀疏)的两个困难

  1. 减少数据搬运:算力扩张是容易的,提高并行度是困难的,主要受限于稀疏矩阵的存储格式是压缩的(跳过0值),而SpMxSpM意味着需要对两个乘数的下标进行对齐(Intersection),才能确定是否需要乘累加,因此相比于简单复制乘加单元来增加算力(在稠密场景下比较有收益),如何提高这种压缩后的数据的复用性是整个架构效率的关键
  2. 适应算法多样性:不同的数据pattern(稀疏度高低、结构化稀疏等)可能对应不同的tradeoff,也就产生了不同场景下的多种“最优”算法,如果加速器架构只能适应其中的一小部分,而在另一部分上表现较差,并不能算很好的设计,为了尽可能提高通用性,从SpMxSpM的底层dataflow进行思考是必要的,例如GAMMA对内外积和Gustavson的列举和分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值