ACM 5,1 学习内容----dp

                最长公共子序列:X,Y,序列;

法一:枚举,就是找x的所有子序列,是否为y的子序列,再从中找最长的,即为公共子序列;

法二:DP解题,1,最优子结构,假设z为最长子序列,设x=<x1,x2,,,,xm>,y=<y1,y2,,,,,yn>,z=<z1,z2,,,,,zk>,

分三种情况:(从每个数列最后一个元素开始,用zk与xm和yn比较,结果如下)

A:若xm=yn,则zk=xm=yn;则z(k-1)是x(m-1)和y(n-1)的lcs;

B:若xm!=yn;且zk!=xm;则z(m-1)是x(m-1)和y的一个lcs

C:与B同理;就是xm!=yn,zk!=yn,z是x和y(n-1)的lcs;

其实一直不怎么懂,z(x)

然后重复上述;(后来学长又举了一个例子,只想起一点点:

就是给一数列,比如:2 3 1  4 3 5 6

                                         0 1 0 2  1 3 4        好像是这样,忘了,能听懂,但是还是找不到它与最长子序列的相似点

2 用递归算法反复解同样题,并保存在表中,

lcs递归的解                       c[i,j]为xi,yj的lcs长度;

由前面说的:总结:c[i,j]=0;当x=0;或y=0;

c[i,j]=c[i-1,j-1]+1;当i,j>0且xi=yj

c[i,j]=max(c[i,j-1],c[i-1,j];当i,j>0;且xi!=yi;



数塔:f[i][j]=max[f[i-1][j-1],f[i-1][j]]+a[i][j];

lcs:f[i][j]=maxf[i-1][j-1]+1,max(f[i][j-1],f[i-1][j]

los:f[i]=f[j+1];

今天还讲了上升子序列;





红色区域希望明天要彻底弄明白;要了解怎么用;不然讲了跟没讲一样;要学就学明白;

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页