The Unique MST
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 22098 Accepted: 7847
Description
Given a connected undirected graph, tell if its minimum spanning tree is unique.
Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V’, E’), with the following properties:
1. V’ = V.
2. T is connected and acyclic.
Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E’) of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E’.
Input
The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.
Output
For each input, if the MST is unique, print the total cost of it, or otherwise print the string ‘Not Unique!’.
Sample Input
2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2
Sample Output
3
Not Unique!
Source
POJ Monthly–2004.06.27 srbga@POJ
代码:
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <stack>
#include <queue>
#include <set>
using namespace std;
#define INF 10000000
/*
* 次小生成树
* 求最小生成树时,用数组Max[i][j]来表示MST中i到j最大边权
* 求完后,直接枚举所有不在MST中的边,替换掉最大边权的边,更新答案
* 点的编号从1开始
*/
const int MAXN=110;
bool vis[MAXN];
int lowc[MAXN];
int pre[MAXN];//记录前驱节点
int Max[MAXN][MAXN];//Max[i][j]表示在最小生成树中从i到j的路径中的最大边权
bool used[MAXN][MAXN];//是否是最小生成树的边
int Prim(int cost[][MAXN],int n)
{
int ans=0;
memset(vis,false,sizeof(vis));
memset(Max,0,sizeof(Max));
memset(used,false,sizeof(used));
memset(lowc,0,sizeof(lowc));
for(int i=1;i<=n;i++)
{
lowc[i]=cost[1][i];
pre[i]=1;
}
lowc[1]=0;
vis[1]=true;
pre[1]=-1;
for(int i=1;i<n;i++)
{
int minc=INF;
int p=-1;
for(int j=1;j<=n;j++)
if(!vis[j] && minc > lowc[j])
{
minc = lowc[j];
p = j;
}
if(minc==INF)
return -1;
ans += minc;
vis[p]=true;
used[p][pre[p]]=used[pre[p]][p]=true;
for(int j=1;j<=n;j++)
{
if(vis[j])
Max[j][p]=Max[p][j]=max(Max[j][pre[p]],lowc[p]);
if(!vis[j]&&lowc[j]>cost[p][j])
{
lowc[j]=cost[p][j];
pre[j]=p;
}
}
}
return ans;
}
int ans;
int smst(int cost[][MAXN],int n)//求次小生成树
{
int Min=INF;
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
if(cost[i][j]!=INF && !used[i][j])
{
Min=min(Min,ans+cost[i][j]-Max[i][j]);
}
if(Min==INF)
return -1;//不存在
return Min;
}
int cost[MAXN][MAXN];
int main()
{
int T;
int n,m;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
int u,v,w;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if(i==j)
cost[i][j]=0;
else
cost[i][j]=INF;
}
while(m--)
{
scanf("%d%d%d",&u,&v,&w);
if (cost[u][v] > w)
cost[u][v]=cost[v][u]=w;
}
ans=Prim(cost,n);
if(ans==smst(cost,n))
printf("Not Unique!\n");//次小生成树和最小生成树一样大
else
printf("%d\n",ans);
}
return 0;
}
本文深入探讨了在给定的连通无向图中,如何判断其最小生成树是否唯一,并通过算法实现求解最小生成树与次小生成树的过程。重点在于通过Prim算法求解最小生成树,并通过比较最小生成树与次小生成树的大小,来判断最小生成树是否唯一。
1万+

被折叠的 条评论
为什么被折叠?



