85. Maximal Rectangle

第一种方法,单调栈,对每一行用一次单调栈,维护h数组,就会变成84题!!!!

class Solution {
public:
    int maximalRectangle(vector<vector<char>>& matrix) {
        if(matrix.size() == 0) return 0;
        int n = matrix.size();
        int m = matrix[0].size();
        int maxx = 0;
        stack<int>st;
        vector<int>h(m + 1, 0);
        for(int i = 0; i < n; ++ i){
            for(int j = 0; j < m; ++ j){
                if(matrix[i][j] == '1')
                    h[j]++;
                else
                    h[j] = 0;
            }
            h[m] = 0;
            while(!st.empty())
                st.pop();

            int pos = 0;
            while(pos <= m){
                if(st.empty() || h[st.top()] <= h[pos])
                    st.push(pos++);
                else{
                    int cur = st.top();
                    st.pop();
                    int w;
                    if(st.empty())
                        w = pos;
                    else
                        w = pos - st.top() - 1;
                    maxx = max(maxx, w * h[cur]);
                }
            }
        }
        return maxx;
    }
};

dp的做法, 高度依然是用单调栈那样维护, 那么, 对于每一行中的每一个数j,维护从j到最右边和到左边为1的范围,最后max(如果j 相应的位0, h数组也会是0, 所以不用担心)

class Solution {
public:
    int maximalRectangle(vector<vector<char>>& matrix) {
        if(matrix.size() == 0) return 0;
        int n = matrix.size();
        int m = matrix[0].size();
        int maxx = 0;
        vector<int>h(m, 0);
        vector<int>l(m, 0);
        vector<int>r(m, m - 1);
        for(int i = 0; i < n; ++ i){
            int left = 0, right = m - 1;

            for(int j = 0, k = m - 1; j < m && k >= 0; ++ j, -- k){
                if(matrix[i][k] == '1') 
                    r[k] = min(r[k], right);
                else{
                    r[k] = m - 1;
                    right = k - 1;
                }

                if(matrix[i][j] == '1'){
                    h[j] ++;
                    l[j] = max(left, l[j]);
                }
                else{
                    h[j] = 0;
                    l[j] = 0;
                    left = j + 1;
                }
            }
            for(int j = 0; j < m; ++ j)
                maxx = max(maxx, h[j] * (r[j] - l[j] + 1));
        }
        return maxx;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值